A version of dynamic stochastic general equilibrium model for open economy
Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 117-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a dynamical stochastic model of general equilibrium for key indicators of Russian economy. A special feature of the approach is the Keynesian microeconomic foundation, which takes into account market failures such as imperfect competition, inflexible prices and wages. The second specific feature is the hypothesis of rational expectations. The model is a system of 17 equations describing the dynamics of key macroeconomic indicators such as GDP, inflation and interest rates, exchange rate, export, import, consumption relative to its equilibrium trajectories. The model is intended to assess the nature of the reaction of key economic indicators to fluctuations in exogenous factors. Using the constructed model, the effects on key macroeconomic indicators from demand shocks, total factor productivity, and changes in the world interest rate are estimated. The results of modeling and calculations can be used by monetary authorities in the development of monetary policy.
Keywords: macroeconomic modeling, dynamic stochastic General equilibrium models, DSGE-models.
@article{MM_2019_31_11_a8,
     author = {V. I. Baluta and D. N. Shults},
     title = {A version of dynamic stochastic general equilibrium model for open economy},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--131},
     publisher = {mathdoc},
     volume = {31},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_11_a8/}
}
TY  - JOUR
AU  - V. I. Baluta
AU  - D. N. Shults
TI  - A version of dynamic stochastic general equilibrium model for open economy
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 117
EP  - 131
VL  - 31
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_11_a8/
LA  - ru
ID  - MM_2019_31_11_a8
ER  - 
%0 Journal Article
%A V. I. Baluta
%A D. N. Shults
%T A version of dynamic stochastic general equilibrium model for open economy
%J Matematičeskoe modelirovanie
%D 2019
%P 117-131
%V 31
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_11_a8/
%G ru
%F MM_2019_31_11_a8
V. I. Baluta; D. N. Shults. A version of dynamic stochastic general equilibrium model for open economy. Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 117-131. http://geodesic.mathdoc.fr/item/MM_2019_31_11_a8/

[1] M. Turuntseva, “Prognozirovanie v Rossii: obzor osnovnykh modelei”, Ekonomicheskaia politika, 2011, no. 1, 193–202

[2] I. G. Pospelov, I. I. Pospelova, M. A. Khokhlov, G. E. Shipulina, New Principles and Methods of Development of Macro Models of the Economy and a Model of Modern Russian Economy, VTs RAN, M., 2006

[3] M. Iu. Andreev, I. G. Pospelov, “Kapital v stokhasticheskoi dinamicheskoi modeli ekonomicheskogo ravnovesiia”, Matematicheskoe modelirovanie, 19:9 (2007), 49–53 | MR

[4] G. Mankiw, P. Romer (eds.), New Keynesian Macroeconomics, v. 1, Imperfect Competition and Sticky Prices, The MIT Press, 1991, 444

[5] Lucas R., Sargent T. (eds.), Rational Expectations and Econometric Practice, The University of Minnesota Press, 1984, 689

[6] D. DeJong, C. Dave, Structural Macroeconometrics, 2nd edition, Princeton University Press, Princeton, 2011, 418 pp.

[7] A. Mikusheva, “Otsenivanie dinamicheskikh stochasticheskikh modelei obshchego ravnovesia”, Qauntile, 2014, no. 12, 1–22

[8] S. Chetveriakov, G. Karasev, Strukturnye modeli obmenykh kursov, IEPP, M., 2005, 125 pp.

[9] J. Heijdra Ben, F. Van Der Ploeg, The Foundations of Modern Macroeconomics, University Press, Oxford, 2002, 751 pp.

[10] G. Calvo, “Staggered Contracts in a Utility-Maximizing Framework”, Journal of Monetary Economics, 1983, no. 12, 383–398 | DOI

[11] J. Rotemberg, “Sticky Prices in the United States”, The Journal of Political Economy, 90:6 (1982), 1187–1211 | DOI

[12] B. Heer, A. Maussner, Dynamic General Equilibrium Modelling, Computational Methods and Applications, Second Edition, Springer, Berlin, 2008, 704 pp. | MR

[13] J. Gali, T. Monacelli, “Monetary Policy and Exchange Rate Volatility in a Small Open Economy”, Review of Economic Studies, 72 (2005), 707–734 | DOI | MR | Zbl

[14] J. Gali, M. Gertler, “Inflation dynamics: A structural econometric analysis”, Journal of Monetary Economics, 44 (1999), 195–222 | DOI

[15] J. Taylor, Discretion versus policy rules in practice, (data obrascheniya: 01.04.2018) http://web.stanford.edu/ ̃ johntayl/Papers/Discretion.PDF

[16] D. O. Cherniavski, N. S. Mukhanov, “Vnedrenie pravila denezhnoi politiki v kvartalnuiu prognosticheskuiu model Kazakhstana”, Dengi i kredit, 2017, no. 5, 40–46

[17] D. N. Shults, I. A. Oshchepkov, “Nekotorye aspekty postroenia i ispolzovania dinamicheskikh stohasticheskikh modelei obshchego ravnovesia (DSGE)”, Vestnik Permckogo universiteta. Ser. «Ekonomika», 2016, no. 4 | DOI

[18] A. Zaretski, Poisk optimalnogo varianta monetarnoi politiki v Belarusi: rezultaty prostoi DSGE-modeli

[19] A. Bozhechkova i dr., Postroenie modelei denezhnogo i valutnogo rynkov, Izd-vo Inta Gaidara, M., 2018, 96 pp.

[20] A. Iu. Knobel, “Otsenka funktsii sprosa na import v Rossii”, Prikladnaia ekonometrika, 2011, no. 4, 3–26

[21] R. M. Melnikov, “Vliianie dinamiki tsen na neft na makroekonomicheskie pokazateli rossiiskoi ekonomiki”, Prikladnaia ekonometrika, 2010, no. 1, 20–29