Modeling of nano-modified binary alloy crystallization processes
Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 89-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of nonequilibrium crystallization of a binary aluminum alloy (Al-Si) with modifying refractory nanosized particles, which are the centers of nucleation of the crystalline phase, is proposed. The model describes thermodynamic processes, as well as heterogeneous nucleation and crystallization of $\alpha$-component and $\beta$-component of the melt. The nucleation of the crystalline phase occurs on the surface of the nanoparticles during the supercooling of the melt. The liquidus temperature in the melt depends on the concentration of the dissolved alloying component, which is determined from the non-equilibrium lever equation. When the metal is cooled down to eutectic temperature, the crystallization of the alloy $\alpha$-component takes place, followed by crystallization of the $\beta$-component if the cooling continues. The growth rate of the crystal phase is proportional to the supercooling. The volume of the solid phase formed around the nucleus determines the size of the grain structure in the solidified alloy. Numerical simulation of melt solidification in cylindrical mold is carried out. The parameters of heat exchange of the melt-mold system with the environment are determined in experiments. The features of the heterogeneous nucleation and crystallization kinetics during the melt cooling are considered. It is determined that the conditions of nucleation, crystallization rate, supercooling and solidification time differ significantly within the cast. According to the results obtained, it is found out that as the melt cools, there is a volume-sequential crystallization of the metal. The area with the finest structure of the solidified metal is located near the wall of the mold. The estimation of the grain structure size in the cast is consistent with the experimental results. The reliability of the proposed model is confirmed by comparing the results of numerical calculation with the data of a physical experiment on measuring the temperature during solidification of the melt and studying the properties of the cast.
Keywords: numerical simulation, binary alloy, nano-size refractory particles, crystallization.
Mots-clés : metal modification
@article{MM_2019_31_11_a6,
     author = {V. N. Popov and A. N. Cherepanov},
     title = {Modeling of nano-modified binary alloy crystallization processes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--101},
     publisher = {mathdoc},
     volume = {31},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_11_a6/}
}
TY  - JOUR
AU  - V. N. Popov
AU  - A. N. Cherepanov
TI  - Modeling of nano-modified binary alloy crystallization processes
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 89
EP  - 101
VL  - 31
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_11_a6/
LA  - ru
ID  - MM_2019_31_11_a6
ER  - 
%0 Journal Article
%A V. N. Popov
%A A. N. Cherepanov
%T Modeling of nano-modified binary alloy crystallization processes
%J Matematičeskoe modelirovanie
%D 2019
%P 89-101
%V 31
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_11_a6/
%G ru
%F MM_2019_31_11_a6
V. N. Popov; A. N. Cherepanov. Modeling of nano-modified binary alloy crystallization processes. Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 89-101. http://geodesic.mathdoc.fr/item/MM_2019_31_11_a6/

[1] V. P. Saburov, A. N. Cherepanov, M. F. Zhukov et al, Plazmokhemicheskiy sintez ultradispersnykh poroshkov i ikh primenenie dlia modifitsirovaniia metallov i splavov, Nauka, Novosibirsk, 1995, 344 pp.

[2] I. S. El-Mahallawi, A. Y. Shash, A. E. Amer, “Nanoreinforced Cast Al-Si Alloys with Al$_2$O$_3$, TiO$_2$ and ZrO$_2$”, Nanoparticles Metals, 5:2 (2015), 802–821

[3] D. Turnbul, “Theory of catalysis of nucleation by surface patches”, Acta Metallurgica, 1:11 (1953), 8–14 | DOI

[4] N. H. Fletcher, “Size Effect in Heterogeneous Nucleation”, J. Chem. Phys., 29:3 (1958), 572–576 | DOI

[5] I. Maxwell, A. Hellawell, “A Simple Model for Grain Refinement during Solidification”, Acta Metallurgica, 23:2 (1975), 229–237 | DOI

[6] G. F. Balandin, Osnovy formirovaniia otlivki, v. 2, Mashinostroenie, M., 1979, 335 pp.

[7] V. T. Borisov, Teoriia dvukhfaznoi zony metallicheskogo slitka, Metallurgiia, M., 1987, 222 pp.

[8] B. Chalmers, Principles of Solidification, Wiley, New York, 1964, 288 pp.

[9] M. C. Flemings, Solidification Processing, McGraw-Hill, New York, 1974, 424 pp.

[10] A. Ohno, Solidification. The Separation Theory and its Practical Applications, Springer-Verlag, Berlin–Heidelberg, 1987, 123 pp.

[11] K. Borodianskiy, M. Zinigrad, “Nanomaterials Applications in Modern Metallurgical Processes”, Diffusion Foundations, 9 (2016), 30–41 | DOI

[12] V. P. Komshukov, A. N. Cherepanov, E. V. Protopopov et al, “Modification of metal with nanopowder inoculators in the mold of a continuous bar-casting machine: Me-chanical and metallographic data”, Steel in Translation, 38:10 (2008), 807–810 | DOI

[13] K. Borodianskiy, M. Zinigrad, A. Gedanken, “Aluminum A356 Reinforcement by Carbide Nanoparticles”, Journal of Nano Research, 13 (2011), 41–46 | DOI

[14] N. M. Bozhanova, I. T. Panov, V. K. Manolov et al, “Modification of properties of aluminum protective a nodes by nanopowder materials”, Thermophysics and Aeromechanics, 25:5 (2018), 759–764 | DOI

[15] R. Lazarova, N. Bojanova, R. Dimitrova et al, “Influence of Nanoparticles Introducing in the Melt of Aluminum Alloys on Castings Microstructure and Properties”, International Journal of Metalcasting, 10:4 (2016), 466–476 | DOI

[16] P. M. Kuzmanov, S. I. Popov, L. V. Yovkov et al, “Investigation the effect of modification with nanopowders on crystallization process and microstructure of some alloys”, AIP Conference Proceedings, 1893 (2017), 030104 | DOI

[17] S. Popov, V. Manolov, P. Kuzmanov, A. Cherepanov, “Mathematical Model of Crystallization of Multicomponent Alloy at Presence of Nanoparticles”, Journal of Materials Science and Technology, 22:3 (2014), 167–174 | MR

[18] A. Cherepanov, V. Cherepanova, V. Manolov, L. Yovkov, “On crystallization of a metal in-oculated with nanoparticles”, IOP Conf. Series: Journal of Physics: Conf. Series, 1115 (2018), 042042 | DOI

[19] A. Cherepanov, V. Cherepanova, V. Manolov, “To theory of crystallization of nanomodified alloy”, AIP Conf. Proc., 1893 (2017), 030114 | DOI

[20] A. N. Cherepanov, V. N. Popov, O. P. Solonenko, “Numerical analysis of the spreading and crystallization dynamics of the modified metal droplet on the substrate”, Thermophysics and Aeromechanics, 15:3 (2008), 483–489 | DOI

[21] R. C. Tolman, “The effect of droplet size on surface tension”, J. Chem. Phys., 17 (1949), 333–337 | DOI

[22] A. N. Shiryayev, “On The Statistical Theory of Metal Crystallization”, Selected Works of A. N. Kolmogorov. Mathematics and Its Applications, Soviet Series, 26, ed. Shiryayev A. N., Springer, Dordrecht, 1992 | MR

[23] J. W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, 2002, 1200 pp.

[24] A. A. Samarskii, E. S. Nikolaev, Numerical Methods for Grid Equations, v. II, Iterative Methods, Birkhauser, Basel, 1989, 506 pp. | MR | Zbl

[25] M. Xue, Y. Heichal, S. Chandra, J. Mostaghimi, “Modeling the impact of a molten metal droplet on a solid surface using variable interfacial thermal contact resistance”, Mater. Sci., 42 (2007), 9–18 | DOI