Identification of a production function with age limit for production capacities
Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 47-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The micro-level dynamics of the age-limited vintage production capacity sets a macrolevel production function. The micro-description is based on the hypothesis of a capacity falling at a constant rate and a constant number of workplaces from the moment the production unit is created to its liquidation when the age limit is exceeded. An analytical expression for the endogenous production function with a given maximum age of capacity was obtained in characteristic exponential growth modes with a constant share of new capacity. It is conceded a transitional growth mode with a changing incremental capital intensity of the new capacities. The parameters of the production function can be determined even with significant changes in the share of new capacities in the total capacity that occurred in the Russian economy. For this, the initial microeconomic model of production capacity dynamics was used in numerical calculations of the production function. The parameters are estimated indirectly on the basis of a comparison of the results of calculations by the model with statistical data 1970–2017. The obtained value of the average age limit of capacities A = 25 for the Russian economy explains the vanishing of cost inflation in 2017. Identification of the parameters of the endogenous production function also showed that the value of the average incremental capital intensity for the entire Russian economy decreased significantly from 1970 to 2017. The decrease is explained by the increase in the share of primary industries in output.
Keywords: endogenous production function, production capacity, identification of parameters, Russian economy, age limit of capacities, incremental capital intensity.
@article{MM_2019_31_11_a3,
     author = {N. N. Olenev},
     title = {Identification of a production function with age limit for production capacities},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--60},
     publisher = {mathdoc},
     volume = {31},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_11_a3/}
}
TY  - JOUR
AU  - N. N. Olenev
TI  - Identification of a production function with age limit for production capacities
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 47
EP  - 60
VL  - 31
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_11_a3/
LA  - ru
ID  - MM_2019_31_11_a3
ER  - 
%0 Journal Article
%A N. N. Olenev
%T Identification of a production function with age limit for production capacities
%J Matematičeskoe modelirovanie
%D 2019
%P 47-60
%V 31
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_11_a3/
%G ru
%F MM_2019_31_11_a3
N. N. Olenev. Identification of a production function with age limit for production capacities. Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 47-60. http://geodesic.mathdoc.fr/item/MM_2019_31_11_a3/

[1] N. N., “Olenev Proizvodstvennaia funktsyia s uchetom ogranicheniia proizvodstvennykh moshchnostri po vozrastu”, Trudy MFTI, 9:3 (35) (2017), 143–150 | MR

[2] S. A. Nemniugin, Vvedenie v programmirovanie na klasterakh, M., 2016, 247 pp.

[3] N. Olenev, “Economy of Greece: an evaluation of real sector”, Bulletin of Political Economy, Serials Publ., 10:1 (2016), 25–37

[4] N. Olenev, “Identification of an aggregate production function for Polish economy”, Quantitative Methods in Economics, 19:4 (2019), 430–439

[5] H. S. Houthakker, “The Pareto distribution and the Cobb-Douglas production function in activity analysis”, Review of Econ. Studies, 23(1):60 (1955–1956), 27–31 | DOI

[6] D. Levhari, “A note of Houthakker's aggregate production function in a multifirm industry”, Econometrica, 36:1 (1968), 151–154 | DOI

[7] L. Johansen, “Production functions and the concept of capacity”, Recherches recentes sur la fonction de production, Collection. Econ. math. et economet., 2, 1968, 49–72

[8] L. Johansen, Production functions: an integration of micro and macro, short run and long run aspects, Contributions to economic analysis, 75, North-Holland publ. Co, Amsterdam–London, 1972, 274 pp. | Zbl

[9] A. A. Petrov, I. G. Pospelov, “Sistemnyj analiz razvivayushchejsya ekonomiki: k teorii proizvodstvennykh funktsii. I”, Izv. AN SSSR, Tekhn. kib., 1979, no. 2, 18–27 | Zbl

[10] A. A. Shananin, “Investigation of a class of production functions arising in the macro description of economic systems”, USSR Comput. Math. Math. Phys. (GB), 24:6 (1984), 127–134 | DOI | MR | Zbl | Zbl

[11] N. N. Olenev, A. A. Petrov, I. G. Pospelov, “Model protsessa izmeneniia moshchnosti i proizvodstvennaia funktsiya otrasli khozyaistva”, Matematicheskoe modelirovanie: Prots. v slozhn. ekon. i ekolog. sist., Nauka, M., 1986, 46–60

[12] C. I. Jones, “The shape of production function and the direction of technical change”, Quarterly Journal of Economics, 120:2 (2005), 517–549

[13] R. Lagos, “A model of TFP”, Review of Economic Studies, 73 (2006), 983–1007 | DOI | MR | Zbl

[14] V. Matveenko, “Anatomy of production functions: a technological menu and a choice of the best technology”, Econ. Bull., 30:3 (2010), 1906–1913

[15] N. N. Olenev, R. V. Pechenkin, A. M. Chernecov, Parallelnoe programmirovanie v MATLAB i ego prilozheniya, VC RAN, M., 2007, 120 pp.

[16] N. N. Olenev, “Model zhiznennogo tsikla osnovnyh fondov i proizvodstvennaya funktsiya, uchityvayushchaya rezervy moshchnostej”, Mat. mod., 7:7 (1995), 19–33 | MR | Zbl