Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_11_a1, author = {I. K. Marchevskii and G. A. Shcheglov}, title = {The algorithm of the vortex sheet intensity determining in {3D} incompressible flow simulation around a body}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {21--35}, publisher = {mathdoc}, volume = {31}, number = {11}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_11_a1/} }
TY - JOUR AU - I. K. Marchevskii AU - G. A. Shcheglov TI - The algorithm of the vortex sheet intensity determining in 3D incompressible flow simulation around a body JO - Matematičeskoe modelirovanie PY - 2019 SP - 21 EP - 35 VL - 31 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_11_a1/ LA - ru ID - MM_2019_31_11_a1 ER -
%0 Journal Article %A I. K. Marchevskii %A G. A. Shcheglov %T The algorithm of the vortex sheet intensity determining in 3D incompressible flow simulation around a body %J Matematičeskoe modelirovanie %D 2019 %P 21-35 %V 31 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2019_31_11_a1/ %G ru %F MM_2019_31_11_a1
I. K. Marchevskii; G. A. Shcheglov. The algorithm of the vortex sheet intensity determining in 3D incompressible flow simulation around a body. Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 21-35. http://geodesic.mathdoc.fr/item/MM_2019_31_11_a1/
[1] G. H. Cottet, P. Koumoutsakos, Vortex methods: theory and practice, Cambridge University Press, Cambridge, 2000, 328 pp. | MR
[2] S. N. Kempka, M. W. Glass, J. S. Peery, J. H. Strickland, M. S. Ingber, Accuracy consideration for implementing velocity boundary conditions in vorticity formulations, SANDIA REPORT, No SAND96-0583 UC-700, 1996, 52 pp. | DOI | Zbl
[3] I.K. Lifanov, Singular Integral Equations and Discrete Vortices, VSP, Utrecht, 1996, 475 pp. | MR | Zbl
[4] K. S. Kuzmina, I. K. Marchevskii, V. S. Moreva, “Vortex Sheet Intensity Computation in Incompressible Flow Simulation Around an Airfoil by Using Vortex Methods”, Mathematical Models and Computer Simulations, 10:3 (2018), 276–287 | DOI | MR | Zbl
[5] J. Katz, A. Plotkin, Low-speed aerodynamics from wing theory topanel methods, McGraw-Hill Book Co., Singapore, 1991, 632 pp.
[6] K. S. Kuzmina, I. K. Marchevskii, “On the Calculation of the Vortex Sheet and Point Vortices Influence at Approximate Solution of the Boundary Integral Equation in Two-dimensional Vortex Methods of Computational Hydrodynamics”, Fluid Dynamics, 54:7 (2019) | DOI | Zbl
[7] C.A. Brebbia, J.C.F. Telles, L.C. Wrobel, Boundary Element Techniques. Theory and Applications in Engineering, Springer-Verlag, 1984, 464 pp. | MR | MR | Zbl
[8] M. T. H. Reid, J. K. White, S. G. Johnson, “Generalized Taylor-Duffy method for efficient evaluation of Galerkin integrals in boundary-element method computations”, IEEE Transactions on Antennas and Propagation, 63:1 (2015), 195–209 | DOI | MR | Zbl
[9] I.S. Gradshteyn, I.M. Ryzhik, Yu.V. Geronimus, M.Yu. Tseytlin, Table of Integrals, Series, and Products, Elsevier Science Technology Books, 1160 pp. | MR | MR
[10] A. van Oosterom, J. Strackee, “The Solid Angle of a Plane Triangle”, IEEE Trans. Biomed. Eng., BME-30 (1983), 125–126 | DOI
[11] O. C. Zienkiewicz, L. R. Taylor, The Finite Element Method, v. 1, The Basis, Butterworth-Heinemann, 2000, 707 pp. | MR | Zbl
[12] N. N. Kalitkin, Chislennye metody, 2 izd., BKHV-Peterburg, SPb., 2011, 592 pp.