The algorithm of the vortex sheet intensity determining in 3D incompressible flow simulation around a body
Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 21-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

An original algorithm is developed for vortex methods of computational fluid dynamics for determining the intensity of the vortex sheet on the surface of a body in the flow of an incompressible medium. Unlike the common in the vortex methods approach to satisfying the no-slip boundary condition on a streamlined surface, which is based on ensuring that the normal velocity component of the medium is zero, the proposed procedure is based on a mathematically equivalent condition of equality to zero of the tangent velocity component on the body surface. The unknown intensity of the vortex sheet is assumed to be piecewise constant on triangular panels that approximate the surface of the body. The resulting integral equation is approximated by a system of linear algebraic equations, which dimension is twice the number of panels. The coefficients of the system matrix are expressed through double integrals over the panels. An algorithm is proposed for calculating these integrals for the case of neighboring panels, when these integrals are improper. An additive singularity exclusion is performed and analytical expressions for the integrals of them are obtained. The smooth parts of integrands are integrated numerically using Gaussian quadrature formulae. The proposed algorithm makes it possible to improve significantly the accuracy of the vortex sheet intensity reconstruction when flow simulating around complex-shaped bodies by using vortex methods for arbitrary triangular surface meshes, including essentially non-uniform and having cells with high aspect ratio.
Keywords: vortex method, boundary integral equation, vortex sheet, Biot–Savart law.
Mots-clés : incompressible media, vortex influence
@article{MM_2019_31_11_a1,
     author = {I. K. Marchevskii and G. A. Shcheglov},
     title = {The algorithm of the vortex sheet intensity determining in {3D} incompressible flow simulation around a body},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--35},
     publisher = {mathdoc},
     volume = {31},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_11_a1/}
}
TY  - JOUR
AU  - I. K. Marchevskii
AU  - G. A. Shcheglov
TI  - The algorithm of the vortex sheet intensity determining in 3D incompressible flow simulation around a body
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 21
EP  - 35
VL  - 31
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_11_a1/
LA  - ru
ID  - MM_2019_31_11_a1
ER  - 
%0 Journal Article
%A I. K. Marchevskii
%A G. A. Shcheglov
%T The algorithm of the vortex sheet intensity determining in 3D incompressible flow simulation around a body
%J Matematičeskoe modelirovanie
%D 2019
%P 21-35
%V 31
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_11_a1/
%G ru
%F MM_2019_31_11_a1
I. K. Marchevskii; G. A. Shcheglov. The algorithm of the vortex sheet intensity determining in 3D incompressible flow simulation around a body. Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 21-35. http://geodesic.mathdoc.fr/item/MM_2019_31_11_a1/

[1] G. H. Cottet, P. Koumoutsakos, Vortex methods: theory and practice, Cambridge University Press, Cambridge, 2000, 328 pp. | MR

[2] S. N. Kempka, M. W. Glass, J. S. Peery, J. H. Strickland, M. S. Ingber, Accuracy consideration for implementing velocity boundary conditions in vorticity formulations, SANDIA REPORT, No SAND96-0583 UC-700, 1996, 52 pp. | DOI | Zbl

[3] I.K. Lifanov, Singular Integral Equations and Discrete Vortices, VSP, Utrecht, 1996, 475 pp. | MR | Zbl

[4] K. S. Kuzmina, I. K. Marchevskii, V. S. Moreva, “Vortex Sheet Intensity Computation in Incompressible Flow Simulation Around an Airfoil by Using Vortex Methods”, Mathematical Models and Computer Simulations, 10:3 (2018), 276–287 | DOI | MR | Zbl

[5] J. Katz, A. Plotkin, Low-speed aerodynamics from wing theory topanel methods, McGraw-Hill Book Co., Singapore, 1991, 632 pp.

[6] K. S. Kuzmina, I. K. Marchevskii, “On the Calculation of the Vortex Sheet and Point Vortices Influence at Approximate Solution of the Boundary Integral Equation in Two-dimensional Vortex Methods of Computational Hydrodynamics”, Fluid Dynamics, 54:7 (2019) | DOI | Zbl

[7] C.A. Brebbia, J.C.F. Telles, L.C. Wrobel, Boundary Element Techniques. Theory and Applications in Engineering, Springer-Verlag, 1984, 464 pp. | MR | MR | Zbl

[8] M. T. H. Reid, J. K. White, S. G. Johnson, “Generalized Taylor-Duffy method for efficient evaluation of Galerkin integrals in boundary-element method computations”, IEEE Transactions on Antennas and Propagation, 63:1 (2015), 195–209 | DOI | MR | Zbl

[9] I.S. Gradshteyn, I.M. Ryzhik, Yu.V. Geronimus, M.Yu. Tseytlin, Table of Integrals, Series, and Products, Elsevier Science Technology Books, 1160 pp. | MR | MR

[10] A. van Oosterom, J. Strackee, “The Solid Angle of a Plane Triangle”, IEEE Trans. Biomed. Eng., BME-30 (1983), 125–126 | DOI

[11] O. C. Zienkiewicz, L. R. Taylor, The Finite Element Method, v. 1, The Basis, Butterworth-Heinemann, 2000, 707 pp. | MR | Zbl

[12] N. N. Kalitkin, Chislennye metody, 2 izd., BKHV-Peterburg, SPb., 2011, 592 pp.