Numerical simulation of supersonic separated flow over inclined backward-facing step using RANS and LES methods
Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description of two methods for simulation of the flow around complex test configurations is considered. One method implements a well-known approach to solving the Reynolds-averaged Navier-Stokes equations with a closing differential turbulence model. Another method is based on scale-resolving wall-modelled LES approach (WMLES). The classical problem of the flow around the inclined backward-facing step with the generation of expansion waves, intensive shock waves and separated flow zones is considered. A comparison of computational and experimental data is done. The physics of the flow is described. The accuracy of the both approaches is evaluated.
Keywords: supersonic flow, back step, WMLES, IDDES.
Mots-clés : RANS, LES
@article{MM_2019_31_11_a0,
     author = {S. M. Bosnyakov and A. P. Duben and A. A. Zheltovodov and T. K. Kozubskaya and S. V. Matyash and S. V. Mikhailov},
     title = {Numerical simulation of supersonic separated flow over inclined backward-facing step using {RANS} and {LES} methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {31},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_11_a0/}
}
TY  - JOUR
AU  - S. M. Bosnyakov
AU  - A. P. Duben
AU  - A. A. Zheltovodov
AU  - T. K. Kozubskaya
AU  - S. V. Matyash
AU  - S. V. Mikhailov
TI  - Numerical simulation of supersonic separated flow over inclined backward-facing step using RANS and LES methods
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 3
EP  - 20
VL  - 31
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_11_a0/
LA  - ru
ID  - MM_2019_31_11_a0
ER  - 
%0 Journal Article
%A S. M. Bosnyakov
%A A. P. Duben
%A A. A. Zheltovodov
%A T. K. Kozubskaya
%A S. V. Matyash
%A S. V. Mikhailov
%T Numerical simulation of supersonic separated flow over inclined backward-facing step using RANS and LES methods
%J Matematičeskoe modelirovanie
%D 2019
%P 3-20
%V 31
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_11_a0/
%G ru
%F MM_2019_31_11_a0
S. M. Bosnyakov; A. P. Duben; A. A. Zheltovodov; T. K. Kozubskaya; S. V. Matyash; S. V. Mikhailov. Numerical simulation of supersonic separated flow over inclined backward-facing step using RANS and LES methods. Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2019_31_11_a0/

[1] S. M. Bosnyakov, V. V. Vlasenko, M. F. Engulatova, A. A. Zheltovodov, T. K. Kozubskaya, S. V. Matyash, S. V. Mikhailov, “Validatsiia vychislitelnykh metodologii i otsenka kliuchevykh faktorov, vliiaiushchikh na modelirovanie techeniia za klinom razrezheniia”, Resultaty fundam. issled. v prikl. zadachakh aviastroeniia, 2, Nauka, M., 2019 | MR

[2] J. B. Vos, A. Rizzi, D. Darracq, E. H. Hirscheld, “Navier-Stokes solvers in European aircraft design”, Progress in Aerospace Sciences, 38 (2002), 601–697 | DOI

[3] S. M. Bosnyakov, A. V. Volkov, V. V. Vlasenko, M. F. Engulatova, S. V. Matyash, S. V. Mikhailov, A. A. Babulin, “Tochnost rascheta otryvnykh zon s primeneniem razlichnykh differentsialnykh modelei turbulentnosti pri sverkhzvukovom obtekanii prostranstvennogo klina tormozheniia”, Resultaty fundamentalnykh issledovanii v prikladnykh zadachakh aviastroeniia, Nauka, M., 2016, 240–251

[4] K. N. Volkov, V. N. Emelianov, Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii, Fundamentalnaia i prikladnaia fizika, Fizmatlit, M., 2008, 368 pp.

[5] U. Piomelli, “Large-eddy simulation: achievements and challenges”, Progress in Aerospace Sciences, 35 (1999), 335–362 | DOI

[6] B. Chaouat, “The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows”, Flow, Turbulence and Combustion, 99:2 (2017), 279–327 | DOI

[7] T. Gerhold, J. Evans, “Efficient computation of 3D flows for complex configurations with the DLR TAU Code”, Proceedings of the 11th AG STAB/DGLR Symposium (1998), Notes on numerical fluid mechanics, 72, Vieweg, Braunschweig, 1999

[8] L. Cambier, M. Gazaix, An efficient object-oriented solution to CFD complexity, AIAA Paper 2002–0108, 2002 | Zbl

[9] S.M. Bosnyakov (red.), Prakticheskie aspekty resheniia zadach vneshnei I vnutrennei aerodinamiki s primeneniem tekhnologii ZEUS v ramkakh paketa EWT, Trudy TSAGI, 2735, 2015

[10] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaya, “Parallelnyi programmnyi kompleks NOISETTE dlia krupnomasshtabnykh raschetov zadach aerodinamiki I aeroakustiki”, Vychislit. metody i programm., 13 (2012), 110–125 (in Russian)

[11] D. Knighta, H. Yana, A. G. Panarasb, A. Zheltovodov, “Advances in CFD prediction of shockwave turbulent boundary layer interactions”, Progress in Aerospace Sciences, 39 (2003), 121–184 | DOI

[12] W. A. El-Askary, “Simulation of supersonic turbulent flow in the vicinity of an inclined backward-facing step”, Journal International Journal of Computational Fluid Dynamics, 25:7 (2011), 407–423 | DOI | MR | Zbl

[13] J. Fang, Y. Yao, A. Zheltovodov, Z. Li, L. Lu, “Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner”, Physics of Fluids, 27 (2015), 125104 | DOI

[14] D. S. Dolling, Fifty years of shock-wave/boundary-layer interaction research: What next?, AIAA J., 39:8 (2001), 1517–1531 | DOI

[15] F. R. Menter, Improved two-equation $k$-$\omega$ turbulence models for aerodynamic flows, NASA TM-103975, 1992

[16] S. K. Godunov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976

[17] V.P. Kolgan, “Application of the principle of minimum derivatives to the construction of difference schemes for computing discontinuous solutions of gas dynamics”, Uch. Zap. TsaGI, 3:6, 68–77

[18] M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities”, International Journal of Heat and Fluid Flow, 29:6 (2008), 1638–1649 | DOI

[19] P. Bakhvalov, I. Abalakin, T. Kozubskaya, “Edge-based reconstruction schemes for unstruc-tured tetrahedral meshes”, Int. J. Numer. Methods Fluids, 81:6 (2016), 331–356 | DOI | MR

[20] P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Comp. Fluids, 157 (2017), 312–324 | DOI | MR | Zbl

[21] A.P. Duben, “Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes”, Math. Mod. and Comp. Simul., 6:2 (2014), 162–171 | DOI | MR | Zbl

[22] B. Dankov, A. P. Duben, T. K. Kozubskaya, “Numerical simulation of the transonic turbulent flow around a wedge-shaped body with a backward-facing step”, Math. Mod. and Comp. Simul., 8:3 (2016), 274–284 | DOI | MR | Zbl

[23] A. P. Duben, N. S. Zhdanova, T. K. Kozubskaya, “Numerical investigation of the deflector effect on the aerodynamic and acoustic characteristics of turbulent cavity flow”, Fluid Dyn., 52:4 (2017), 561–571 | DOI | MR | Zbl

[24] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems”, Flow Turbulence Combust., 93:1 (2014), 63–92 | DOI

[25] I. I. Volonikhin, V. D. Grigoriev, V. S. Demianenko, H. I. Pisarenko, A. M. Kharitonov, “Sverkhzvukovaia aerodinamicheskaia truba T-313”, Aerofizicheskie issledovaniia, Sb. nauch. tr. ITPM SO AN SSSR, Novosibirsk, 1972, 8–11

[26] V. A. Lebiga, Termoanemometriia nestatsionarnykh protsessov szhimaemykh techenii, Izd-vo NGTU, Novosibirsk, 1997

[27] A. A. Babulin, S. M. Bosnyakov, V. V. Vlasenko, M. F. Engulatova et al, “Experience of validation and tuning of turbulence models as applied to the problem of boundary layer separation on a finite-width wedge”, Comp. Math. Math. Phys., 56:6 (2016), 1020–1033 | DOI | MR | Zbl