Numerical simulation of acoustic fields induced by flow past oscillating solid
Matematičeskoe modelirovanie, Tome 31 (2019) no. 10, pp. 98-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents two computational techniques that do not require a change in the topology of the mesh, to simulate the flow around oscillating bodies. The first technique uses the immersed boundary method, the second — the method of deformed meshes. The capabilities of these two approaches are demonstrated by solving model problems in a two-dimensional formulation for simulating acoustic fields generated by an oscillating cylinder, both single and in the presence of a fixed cylindrical body, in subsonic flow.
Keywords: compressible viscous flow, acoustic field, cylinder oscillation, mathematical modeling, immersed boundary condition, moving mesh, computational aeroacoustics.
@article{MM_2019_31_10_a8,
     author = {I. V. Abalakin and V. A. Vershkov and N. S. Zhdanova and T. K. Kozubskaya},
     title = {Numerical simulation of acoustic fields induced by flow past oscillating solid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {98--116},
     publisher = {mathdoc},
     volume = {31},
     number = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_10_a8/}
}
TY  - JOUR
AU  - I. V. Abalakin
AU  - V. A. Vershkov
AU  - N. S. Zhdanova
AU  - T. K. Kozubskaya
TI  - Numerical simulation of acoustic fields induced by flow past oscillating solid
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 98
EP  - 116
VL  - 31
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_10_a8/
LA  - ru
ID  - MM_2019_31_10_a8
ER  - 
%0 Journal Article
%A I. V. Abalakin
%A V. A. Vershkov
%A N. S. Zhdanova
%A T. K. Kozubskaya
%T Numerical simulation of acoustic fields induced by flow past oscillating solid
%J Matematičeskoe modelirovanie
%D 2019
%P 98-116
%V 31
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_10_a8/
%G ru
%F MM_2019_31_10_a8
I. V. Abalakin; V. A. Vershkov; N. S. Zhdanova; T. K. Kozubskaya. Numerical simulation of acoustic fields induced by flow past oscillating solid. Matematičeskoe modelirovanie, Tome 31 (2019) no. 10, pp. 98-116. http://geodesic.mathdoc.fr/item/MM_2019_31_10_a8/

[1] C. S. Peskin, “Flow patterns around heart valves: a numerical method”, J. Comp. Phys., 10:2 (1972), 252–271 | DOI | MR | Zbl

[2] R. Mittal, G. Iaccarino, “Immersed boundary Methods”, Annu. Rev. Fluid Mech., 37 (2005), 239–261 | DOI | MR | Zbl

[3] Ph. Angot, C. H. Bruneau, P. Fabrie, “A penalization method to take into account obstacles in incompressible viscous flows”, Numer. Math., 81:4 (1991), 497–520 | DOI | MR

[4] E. Feireisl, J. Neustupa, J. Stebel, “Convergence of a Brinkman-type penalization for compressible fluid flows”, J. Diff. Equ., 250:1 (2011), 596–606 | DOI | MR | Zbl

[5] O. V. Vasilyev, N. K. R. Kevlahanv, “Hybrid wavelet collocation-Brinkman penalization method for complex geometry flows”, Int. J. Numer. Meth. Fluids, 40:3–4 (2002), 531–538 | DOI | MR | Zbl

[6] O. Boiron, G. Chiavassa, R. Donat, “A high-resolution penalization method for large Mach number flows in the presence of obstacles”, Comp. Fluids, 38:3 (2009), 703–714 | DOI | MR | Zbl

[7] Q. Liu, O. V. Vasilyev, “A Brinkman penalization method for compressible flows in complex geometries”, J. Comp. Phys., 227:2 (2007), 946–966 | DOI | MR | Zbl

[8] Y. Bae, Y. J. Moon, “On the use of Brinkman penalization method for computation of acoustic scattering from complex boundaries”, Comp. Fluids, 55 (2012), 48–56 | DOI | MR | Zbl

[9] I. V. Abalakin, N. S. Zhdanova, T. K. Kozubskaia, “Immersed Boundary Method for Numerical Simulation of Inviscid Compressible Flows”, Comp. Math. Math. Phys., 58:9 (2018), 1411–1419 | DOI | MR | Zbl

[10] R. Komatsu, W. Iwakami, Y. Hattori, “Direct numerical simulation of aeroacoustic sound by volume penalization method”, Comput. Fluids, 130 (2016), 24–36 | DOI | MR | Zbl

[11] D. J. Mavriplis, “Mesh generation and adaptivity for complex geometries and flows”, Handbook of Computational Fluid Mechanics, ed. Peyret R., Elsevier, 1996, 417–459 | DOI | MR

[12] P. Renzoni et al, “EROS a common European Euler code for the analysis of the helicopter rotor flowfield”, Progress in Aerospace Sciences, 36:5–6 (2000), 437–485 | DOI

[13] R. Steijl, G. Barakos, “Sliding mesh algorithm for CFD analysis of helicopter rotor-fuselage aerodynamics”, Int. J. Numer. Meth. Fluids, 58:5 (2008), 527–549 | DOI | Zbl

[14] B. E. Pobedria, D. V. Georgievskii, Osnovy mekhaniki sploshnoi sredy. Kurs lektsii, Fizmatlit, M., 2006, 272 pp.

[15] I. V. Abalakin, V. A. Anikin, P. A. Bakhvalov, V. G. Bobkov, T. K. Kozubskaya, “Numerical Investigation of the Aerodynamic and Acoustical Properties of a Shrouded Rotor”, Fluid Dynamics, 51:3 (2016), 419–433 | DOI | DOI | MR | MR | Zbl

[16] I. V. Abalakin, P. A. Bakhvalov, V. G. Bobkov, T. K. Kozubskaya, V. A. Anikin, “Numerical Simulation of Aerodynamic and Acoustic Characteristics of a Ducted Rotor”, Math. Models Comp. Simul., 8:3 (2016), 309–324 | DOI | MR | Zbl

[17] I. V. Abalakin, P. A. Bakhvalov, O. A. Doronina, N. S. Zhdanova, T. K. Kozubskaia, “Simulating Aerodynanics of a Moving Body Specified by Immersed Boundaries on Dynamically Adaptive Unstructured Meshes”, MM Comp.Simul., 11:1 (2019), 35–45 | MR | Zbl

[18] P. A. Bakhvalov, V. A. Vershkov, “Reberno-orientirovannye skhemy na podvizhnykh gibridnykh setkakh v kode NOISEtte”, Preprinty IPM im. M. V. Keldysha, 2018, 127

[19] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaia, “Parallelnyi programmnyi kompleks NOISETTE dlia krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychislitelnye metody i programmirovanie, 13 (2012), 110–125

[20] V. A. Vershkov, “Algoritm deformatsii setki dlia ucheta tsiklicheskogo upravleniia i makhovykh dvizhenii lopastei v zadache obtekaniia nesushchego vinta vertoleta”, Nauchnyi vestnik MGTU GA, 22:2 (2019), 62–74

[21] P. A. Bakhvalov, T. K. Kozubskaya, “Construction of edge-based 1-exact schemes for solving the Euler equations on hybrid unstructured meshes”, Comp. Math. Math. Phys., 57:4 (2017), 680–697 | DOI | MR | Zbl

[22] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Meth. Fluids, 81:6 (2002), 331–356 | DOI | MR

[23] L. Qu, C. Norberg, L. Davidson, S. H. Peng, F. Wang, “Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200”, J. Fluid Struct., 39 (2013), 347–370 | DOI

[24] I. V. Abalakin, A. P. Duben, N. S. Zhdanova, T. K. Kozubskaia, “Simulating an Unsteady Turbulent Flow around a Cylinder by the Immersed Boundary Method”, Mathematical Models and Computer Simulations, 11:1 (2019), 74–85 | DOI | MR