Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_10_a5, author = {S. A. Cheprasov}, title = {Numerical simulation of methane air mixture turbulent combustion with using {LES}}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {63--71}, publisher = {mathdoc}, volume = {31}, number = {10}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_10_a5/} }
S. A. Cheprasov. Numerical simulation of methane air mixture turbulent combustion with using LES. Matematičeskoe modelirovanie, Tome 31 (2019) no. 10, pp. 63-71. http://geodesic.mathdoc.fr/item/MM_2019_31_10_a5/
[1] A. N. Secundov, Some difficulties of turbulence flow modeling, Lambert Academic Publishing, Germany, 2014, 132 pp.
[2] T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 3rd ed., 2011, 588 pp.
[3] A. N. Secundov, S. A. Cheprasov, K. Ya. Yakubovskii, “Comparison of simulated results for CO fields at the flame front by the RANS and LES methods”, High Temperature, 53:5 (2015), 709–712 | DOI
[4] V. R. Kuznetsov, V. A. Sabel'nikov, Turbulence and Combustion, Hemispfere Publishing Corporation, 1990 | MR | MR | Zbl
[5] C. Angelberger, D. Veynante, F. Egolfopoulos, “LES of Chemical and Acoustic Forcing of a Premixed Dump Combustor”, Flow, Turbulence and Combustion, 65 (2000), 205–222 | DOI | Zbl
[6] P. Schmitt, T. Poinsot, B. Schuermans, K. P. Geigle, “Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner”, J. Fluid Mech., 570 (2007), 17–46 | DOI | Zbl
[7] Fureby C., “Comparison of Flamelet and Finite Rate Chemistry LES for Premixed Turbulent Combustion”, 45th AIAA Aerospace Sciences Meeting and Exhibit (2007, Reno, Nevada)
[8] B. Franzelli, E. Riber, L. Y.M. Gicquel, T. Poinsot, “Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled flame”, Combustion and Flame, 159 (2012), 621–637 | DOI
[9] B. Franzelli, E. Riber, B. Cuenot, “Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame”, 3rd INCA Colloquim (to appear) , 12 pp. | Zbl
[10] V. Sabelnikov, C. Fureby, “Extended LES PaSR model for simulation of turbulent combustion”, Progress in Propulsion Physics, 4 (2013), 539–568 | DOI
[11] S. G. Matveev, I. A. Zubrilin, “Large-eddy simulation of flow structure after a bluff-body flameholder with different chemical kinetics mechanisms”, Life Sci. J., 11:11 (2014), 644–649 http://www.lifesciencesite.com | DOI
[12] F. F. Grinstein, K. K. Kailasanath, “Three Dimensional Numerical Simulations of Unsteady Reactive Square Jets”, Comb. Flame, 100 (1994), 2 | DOI
[13] Cheprasov S. A., “Modeling of Self Oscillation in Combustion Chambers”, Mathematical Models and Computer Simulations, 10:6 (2018), 709–713 | DOI | MR | MR
[14] B. Franzelli, E. Riber, M. Sanjose, T. Poinsot, “A two step chemical scheme for kerosene - air premixed flames”, Combustion and Flame, 157 (2010), 1364–1373 | DOI
[15] M. Germano, U. Piomelli, P. Moin, W. H. Cabot, “A dynamic subgrid scale eddy viscosity model”, Phys. Fluids, 3:7 (1991), 1760–1765 | DOI | Zbl
[16] P. Magre, G. Moreau, R. Collin, Borghi, M. Péalat, “Further studies by CARS of premixed turbulent combustion in a high velocity flow”, Comb. and Flame, 71 (1988), 147–168 | DOI
[17] J. Warnatz, U. Maas, R. W. Dibble, Physical and chemical fundamentals, modeling and simulations, experiments, pollutant formation, Springer, 2001