Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_10_a2, author = {I. S. Bosnyakov}, title = {Accuracy comparison for discontinuous {Galerkin} schemes in the case of wave and vortex}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {22--34}, publisher = {mathdoc}, volume = {31}, number = {10}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_10_a2/} }
TY - JOUR AU - I. S. Bosnyakov TI - Accuracy comparison for discontinuous Galerkin schemes in the case of wave and vortex JO - Matematičeskoe modelirovanie PY - 2019 SP - 22 EP - 34 VL - 31 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_10_a2/ LA - ru ID - MM_2019_31_10_a2 ER -
I. S. Bosnyakov. Accuracy comparison for discontinuous Galerkin schemes in the case of wave and vortex. Matematičeskoe modelirovanie, Tome 31 (2019) no. 10, pp. 22-34. http://geodesic.mathdoc.fr/item/MM_2019_31_10_a2/
[1] N. Kroll, C. Hirsch, F. Bassi, C. Johnston, K. Hillewaert (eds.), Industrialization of High-Order Methods-A Top-Down Approach: Results of a Collaborative Research Project Funded by the European Union 2010–2014, Springer, 2015 | MR | Zbl
[2] M. V. Lipavskii, A. D. Savel'ev, A. I. Tolstykh, D. A. Shirobokov, “Multioperator schemes up to the 18th order of accuracy with applications to problems of instability and jet acoustics”, TsAGI Science Journal, 43:3 (2012)
[3] R. C. Moura, S. J. Sherwin, J. Peiro, “Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods”, J. Comput. Phys., 298 (2015), 659–710 | DOI | MR
[4] S. J. Sherwin, “Dispersion analysis of the continuous and discontinuous Galerkin formulations”, Discontinuous Galerkin Methods, Springer, Berlin–Heidelberg, 2000, 425–431 | DOI | MR | Zbl
[5] S. M. Bosnyakov, S. V. Mikhaylov V. Yu. Podaruev, A. I. Troshin, “Unsteady Discontinuous Galerkin Method of a High Order of Accuracy for Modeling Turbulent Flows”, Mathematical Models and Computer Simulations, 11:1 (2019), 22–34 | DOI | MR
[6] S. V. Mihaylov, A. N. Morozov, V. Yu. Podaruev, A. V. Wolkov, V. V. Vlasenko, “Verifikatsiia chislennoi skhemy razryvnogo metoda Galerkina primenitelno k linearizovannym uravneniiam Eulera”, Rezultaty fundamentalnykh issledovanii v prikladnykh zadachakh aviastroeniia, M., 2016, 228–239
[7] L. D. Landau, E. M. Lifshitz, Fluid Mechanics, v. 6, 2nd ed., Butterworth-Heinemann | MR | MR
[8] B. Cockburn, C. W. Shu, “The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V”, J. Comput. Phys, 141:2 (1998), 199–224 | DOI | MR | Zbl