Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_10_a10, author = {S. M. Bosniakov and A. V. Wolkov and A. P. Duben and V. I. Zapryagaev and T. K. Kozubskaya and S. V. Mikhaylov and A. I. Troshin and V. O. Tsvetkova}, title = {Comparison of two higher accuracy unstructured scale-resolving approaches applied to dual-stream nozzle jet simulation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {130--144}, publisher = {mathdoc}, volume = {31}, number = {10}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_10_a10/} }
TY - JOUR AU - S. M. Bosniakov AU - A. V. Wolkov AU - A. P. Duben AU - V. I. Zapryagaev AU - T. K. Kozubskaya AU - S. V. Mikhaylov AU - A. I. Troshin AU - V. O. Tsvetkova TI - Comparison of two higher accuracy unstructured scale-resolving approaches applied to dual-stream nozzle jet simulation JO - Matematičeskoe modelirovanie PY - 2019 SP - 130 EP - 144 VL - 31 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_10_a10/ LA - ru ID - MM_2019_31_10_a10 ER -
%0 Journal Article %A S. M. Bosniakov %A A. V. Wolkov %A A. P. Duben %A V. I. Zapryagaev %A T. K. Kozubskaya %A S. V. Mikhaylov %A A. I. Troshin %A V. O. Tsvetkova %T Comparison of two higher accuracy unstructured scale-resolving approaches applied to dual-stream nozzle jet simulation %J Matematičeskoe modelirovanie %D 2019 %P 130-144 %V 31 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2019_31_10_a10/ %G ru %F MM_2019_31_10_a10
S. M. Bosniakov; A. V. Wolkov; A. P. Duben; V. I. Zapryagaev; T. K. Kozubskaya; S. V. Mikhaylov; A. I. Troshin; V. O. Tsvetkova. Comparison of two higher accuracy unstructured scale-resolving approaches applied to dual-stream nozzle jet simulation. Matematičeskoe modelirovanie, Tome 31 (2019) no. 10, pp. 130-144. http://geodesic.mathdoc.fr/item/MM_2019_31_10_a10/
[1] V. Vlasenko, S. Bosniakov, S. Mikhailov, A. Morozov, A. Troshin, “Computational approach for investigation of thrust and acoustic performances of present-day nozzles”, Prog. Aerosp. Sci., 46:4 (2010), 141–197 | DOI
[2] A. Savelyev, N. Zlenko, E. Matyash, S. Mikhaylov, A. Shenkin, “Optimal design and installation of ultra high bypass ratio turbofan nacelle”, Proc. AIP Conf., 1770 (2016), 030123 | DOI
[3] J. F. Groeneweg, E. J. Rice, “Aircraft turbofan noise”, J. Turbomachinery, 109 (1987), 130–141 | DOI
[4] N. A. Zlenko, S. V. Mikhailov, A. A. Savelev, A. V. Shenkin, “Metodika optimalnogo aerodinamicheskogo proektirovaniia motogondoly TRDD s bolshoi stepeniu dvukhkonturnosti”, Uch. Zapiski TsAGI, 46:6 (2015), 20–38
[5] N. W. M. Ko, A. S. H. Kwan, “The initial region of subsonic coaxial jets”, J. Fluid Mech., 73:2 (1976), 305–332 | DOI
[6] E. Murakami, D. Papamoschou, “Mean Flow Development in Dual-Stream Compressible Jets”, AIAA J., 40:6 (2002), 1131–1138 | DOI
[7] R. I. Sujith, R. Ramesh, S. Pradeep, S. Sriram, T. M. Muruganandam, “Mixing of high speed coaxial jets”, Exp. Fluids, 30:3 (2001), 339–345 | DOI
[8] V. I. Zapryagaev, N. P. Kiselev, A. A. Pivovarov, “Gasdynamic structure of an axisymmetric supersonic underexpanded jet”, Fluid Dynamics, 50:1 (2015), 87–97 | DOI | Zbl
[9] A. P. Markesteijn, S. A. Karabasov, “GPU CABARET Solutions for the CoJen Jet Noise Experiment”, 2018 AIAA/CEAS Aeroacoustics Conference, AIAA AVIATION Forum, AIAA 2018-3921 | DOI
[10] V. A. Semiletov, P. G. Yakovlev, S. A. Karabasov, G. A. Faranosov, V. F. Kopiev, “Jet and jet-wing noise modelling based on the Cabaret Miles flow solver and the Ffowcs Williams Hawkings method”, Intern. J. of Aeroacoustics, 15:6–7 (2016), 631–645 | DOI
[11] L. A. Benderskii, D. A. Liubimov, “Primenenie RANS/ILES metoda vysokogo razresheniia dlia issledovaniia slozhnykh turbulentnykh strui”, Uch. Zap. TsAGI, 45:2 (2014), 22–36
[12] J. Verriere, F. Gand, S. Deck, “Zonal detached-eddy simulations of a dual-stream jet”, AIAA J., 54:10 (2016), 3176–3190 | DOI
[13] M. L. Shur, P. R. Spalart, M. K. Strelets, “Noise Prediction for Underexpanded Jets in Static and Flight Conditions”, AIAA J., 49:9 (2011), 2000–2017 | DOI
[14] P. R. Spalart, “Detached-eddy simulation”, Annu. Rev. Fluid. Mech., 41 (2009), 181–202 | DOI | Zbl
[15] F. Bassi. S. Rebay, “A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations”, J. Comp. Phys., 131 (1997), 267–279 | DOI | MR | Zbl
[16] R. Hartmann, “Wall-resolved and wall-modeled ILES based on high-order DG”, Proc. ECCOMAS (ECCM-ECFD) 2018 Conference (Glasgow, UK), 14 pp.
[17] J. B. Chapelier, M. de la Llave Plata, E. Lamballais, “Development of a multiscale LES model in the context of a modal DG method”, Comp. Meth. Appl. Mech. Eng., 307 (2016), 275–299 | DOI | MR
[18] P. Bakhvalov, I. Abalakin, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Methods Fluids, 81:6 (2016), 331–356 | DOI | MR
[19] P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Comp. Fluids, 157 (2017), 312–324 | DOI | MR | Zbl
[20] S. M. Bosnyakov, S. V. Mikhaylov, V. Yu. Podaruev, A. I. Troshin, “Unsteady Discontinuous Galerkin Method of a High Order of Accuracy for Modeling Turbulent Flows”, Mathematical Models and Computer Simulations, 11:1 (2019), 22–34 | DOI | MR
[21] I. S. Bosnyakov, S. V. Mikhaylov, V. Yu. Podaruev, A. I. Troshin, V. V. Vlasenko, A. V. Wolkov, “Application of high-order discontinuous Galerkin method to LES/DES test cases using computers with high number of cores”, Proc. 23rd AIAA Computational Fluid Dynamics Conference (USA, Denver, Colorado, 5–9 June 2017), 13 pp.
[22] P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. Kh. Strelets, A. Travin, “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theor. Comp. Fluid Dyn., 20 (2006), 181–195 | DOI | Zbl
[23] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows”, Flow Turbulence Combust., 95:4 (2015), 709–737 | DOI
[24] B. van Leer, W. T. Lee, P. L. Roe, K. G. Powell, C. H. Tai, “Design of optimally smoothing multistage schemes for the Euler equations”, Comm. Appl. Numer. Meth., 8:10 (1992), 761–769 | DOI | Zbl
[25] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows (Belgium, Antwerpen, 1997), 99–109
[26] P. O. Persson, J. Peraire, “Sub-cell shock capturing for discontinuous Galerkin methods”, Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit (USA, Reno, 9–12 January 2006), 14 pp.
[27] F. R. Menter, Improved two-equation $k$-$\omega$ turbulence models for aerodynamic flows, NASA TM-103975, 1992
[28] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaya, “Parallel research code NOISEtte for large-scale computations of aerodynamics and aero-acoustics problems”, Vychisl. Metody Programm., 13:3 (2012), 110–125
[29] M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. V. Garbaruk, “Analysis of jet-noise-reduction concepts by large-eddy simulation”, Intern. J. of Aeroacoustics, 6 (2007), 243–285 | DOI
[30] C. Mockett, M. Fuchs, A. Garbaruk, F. Thiele, M. Shur, M. Strelets, A. Travin, P. Spalart, “Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES”, Notes on Numerical Fluid Mechanics, 130 (2015), 187–201
[31] A.P. Duben, “Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes”, Mathematical Models and Computer Simulations, 6:2 (2014), 162–171 | DOI | MR | Zbl
[32] A. Duben, T. Kozubskaya, Jet Noise Simulation Using Quasi-1D Schemes on Unstructured Meshes, AIAA-paper 2017-3856, 2017