Comparison of gradient approximation methods in schemes designed for scale-resolving simulations
Matematičeskoe modelirovanie, Tome 31 (2019) no. 10, pp. 7-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various methods for improved accuracy approximation of the gradients entering the diffusion fluxes are considered. Linear combinations of 2$^{\mathrm{nd}}$ order difference schemes for a non-uniform grid that transform into 4$^{\mathrm{th}}$ order schemes in the uniform case were investigated. We also considered 3$^{\mathrm{rd}}$ and 4$^{\mathrm{th}}$ order schemes for approximating gradients on a non-uniform grid in the normal and tangent directions to the cell face, respectively, based on Lagrange polynomials. The initial testing was carried out on one-dimensional functions: a smooth Gauss function and a piecewise linear function. Next, the schemes were applied in direct numerical simulation of the Taylor–Green vortex.
Keywords: approximation order
Mots-clés : diffusion fluxes, gradients.
@article{MM_2019_31_10_a1,
     author = {S. Bakhne and S. M. Bosniakov and S. V. Mikhailov and A. I. Troshin},
     title = {Comparison of gradient approximation methods in schemes designed for scale-resolving simulations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {31},
     number = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_10_a1/}
}
TY  - JOUR
AU  - S. Bakhne
AU  - S. M. Bosniakov
AU  - S. V. Mikhailov
AU  - A. I. Troshin
TI  - Comparison of gradient approximation methods in schemes designed for scale-resolving simulations
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 7
EP  - 21
VL  - 31
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_10_a1/
LA  - ru
ID  - MM_2019_31_10_a1
ER  - 
%0 Journal Article
%A S. Bakhne
%A S. M. Bosniakov
%A S. V. Mikhailov
%A A. I. Troshin
%T Comparison of gradient approximation methods in schemes designed for scale-resolving simulations
%J Matematičeskoe modelirovanie
%D 2019
%P 7-21
%V 31
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_10_a1/
%G ru
%F MM_2019_31_10_a1
S. Bakhne; S. M. Bosniakov; S. V. Mikhailov; A. I. Troshin. Comparison of gradient approximation methods in schemes designed for scale-resolving simulations. Matematičeskoe modelirovanie, Tome 31 (2019) no. 10, pp. 7-21. http://geodesic.mathdoc.fr/item/MM_2019_31_10_a1/

[1] P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. K. Strelets, A. Travin, “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theor. Comput. Fluid Dyn., 20 (2006), 181–195 | DOI | Zbl

[2] M. S. Gritskevich, A. V. Garbaruk, J. Schutze, F. R. Menter, “Development of DDES and IDDES formulations for the $k$-$\omega$ shear stress transport model”, Flow Turb. Combust., 88:3 (2012), 431–449 | DOI | Zbl

[3] A. Travin, M. Shur, M. Strelets, P. R. Spalart, “Physical and numerical upgrades in the deta-ched-eddy simulation of complex turbulent flows”, Fluid Mech. Appl., 65 (2004), 239–254

[4] L. Fu, X. Y. Hu, N. A. Adams, “A family of high-order targeted ENO scheme for compres-sible-fluid simulations”, J. Comput. Phys., 305 (2015), 333–359 | MR

[5] L. Fu, “A low-dissipation finite-volume method based on a new TENO shock-capturing scheme”, Comp. Phys. Comm., 235 (2019), 25–39 | DOI | MR

[6] H. Yee, B. Sjogreen, “Recent developments in accuracy and stability improvement of non-linear filter methods for DNS and LES of compressible flows”, Comput. Fluids, 169 (2018), 331–348 | DOI | MR | Zbl

[7] F. S. Schranner, J. A. Domaradzki, S. Hickel, N. A. Adam, “Assessing the numerical dissipation rate and viscosity in numerical simulations of fluid flows”, Comput. Fluids, 114 (2015), 84–97 | DOI | MR | Zbl

[8] A. N. Kudriavtsev, T. V. Poplavskaia, D. V. Khotianovskii, “Primenenie skhem vysokogo poriadka tocnnosti pri modelirovanii nestatsionarnykh sverkhzvukovyh techenii”, Mat. modelirovanie, 19:7 (2007), 39–55 | MR | Zbl

[9] N. B. Petrovskaia, “Vybor vesovykh koeffitsientov v zadache approksimatsii gradienta metodom naimenshikh kvadratov”, Mat. modelirovanie, 16:5 (2004), 83–93 | MR

[10] S. Bosnyakov, I. Kursakov, A. Lysenkov, S. Matyash, S. Mikhailov, V. Vlasenko, J. Quest, “Computational tools for supporting the testing of civil aircraft configurations in wind tunnels”, Progress in Aerospace Sciences, 44:2 (2008), 67–120 | DOI

[11] M. E. Ilin, Approksimatsiia i interpoliatsiia, Izd-vo RGRTA, Riazan, 2003, 56 pp.

[12] B. Fornberg, “Generation of finite difference formulas on arbitrarily spaced grids”, Math. Computation, 51:184 (1988), 699–706 | DOI | MR | Zbl

[13] W. M. Rees, A. Leonard, D. I. Pullin, P. Koumoutsakos, “A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds number”, J. Comput. Physics, 230 (2011), 2794–2805 | DOI | MR | Zbl

[14] S. V. Mikhaylov, V. V. Vlasenko, “Programma ZEUS dlia rascheta nestatsionarnykh techenii v ramkah podhodov RANS i LES”, Materialy XX shkoly-seminara “Aerodinamika letatelnykh apparatov” (pos. Volodarskogo, 2009)

[15] S. M. Bosniakov, “Kontseptsiia programmnogo produkta EWT-TsAGI i osnovnye etapy ee razvitiia”, Trudy TsAGI, 2671, 2007, 3–19

[16] R. Zhang, M. Zhang, C. W. Shu, “On the order of accuracy and numerical performance of two classes of finite volume WENO schemes”, Comm. Comput. Physics, 9:3 (2011), 807–827 | DOI | MR | Zbl