Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_10_a1, author = {S. Bakhne and S. M. Bosniakov and S. V. Mikhailov and A. I. Troshin}, title = {Comparison of gradient approximation methods in schemes designed for scale-resolving simulations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {7--21}, publisher = {mathdoc}, volume = {31}, number = {10}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_10_a1/} }
TY - JOUR AU - S. Bakhne AU - S. M. Bosniakov AU - S. V. Mikhailov AU - A. I. Troshin TI - Comparison of gradient approximation methods in schemes designed for scale-resolving simulations JO - Matematičeskoe modelirovanie PY - 2019 SP - 7 EP - 21 VL - 31 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_10_a1/ LA - ru ID - MM_2019_31_10_a1 ER -
%0 Journal Article %A S. Bakhne %A S. M. Bosniakov %A S. V. Mikhailov %A A. I. Troshin %T Comparison of gradient approximation methods in schemes designed for scale-resolving simulations %J Matematičeskoe modelirovanie %D 2019 %P 7-21 %V 31 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2019_31_10_a1/ %G ru %F MM_2019_31_10_a1
S. Bakhne; S. M. Bosniakov; S. V. Mikhailov; A. I. Troshin. Comparison of gradient approximation methods in schemes designed for scale-resolving simulations. Matematičeskoe modelirovanie, Tome 31 (2019) no. 10, pp. 7-21. http://geodesic.mathdoc.fr/item/MM_2019_31_10_a1/
[1] P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. K. Strelets, A. Travin, “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theor. Comput. Fluid Dyn., 20 (2006), 181–195 | DOI | Zbl
[2] M. S. Gritskevich, A. V. Garbaruk, J. Schutze, F. R. Menter, “Development of DDES and IDDES formulations for the $k$-$\omega$ shear stress transport model”, Flow Turb. Combust., 88:3 (2012), 431–449 | DOI | Zbl
[3] A. Travin, M. Shur, M. Strelets, P. R. Spalart, “Physical and numerical upgrades in the deta-ched-eddy simulation of complex turbulent flows”, Fluid Mech. Appl., 65 (2004), 239–254
[4] L. Fu, X. Y. Hu, N. A. Adams, “A family of high-order targeted ENO scheme for compres-sible-fluid simulations”, J. Comput. Phys., 305 (2015), 333–359 | MR
[5] L. Fu, “A low-dissipation finite-volume method based on a new TENO shock-capturing scheme”, Comp. Phys. Comm., 235 (2019), 25–39 | DOI | MR
[6] H. Yee, B. Sjogreen, “Recent developments in accuracy and stability improvement of non-linear filter methods for DNS and LES of compressible flows”, Comput. Fluids, 169 (2018), 331–348 | DOI | MR | Zbl
[7] F. S. Schranner, J. A. Domaradzki, S. Hickel, N. A. Adam, “Assessing the numerical dissipation rate and viscosity in numerical simulations of fluid flows”, Comput. Fluids, 114 (2015), 84–97 | DOI | MR | Zbl
[8] A. N. Kudriavtsev, T. V. Poplavskaia, D. V. Khotianovskii, “Primenenie skhem vysokogo poriadka tocnnosti pri modelirovanii nestatsionarnykh sverkhzvukovyh techenii”, Mat. modelirovanie, 19:7 (2007), 39–55 | MR | Zbl
[9] N. B. Petrovskaia, “Vybor vesovykh koeffitsientov v zadache approksimatsii gradienta metodom naimenshikh kvadratov”, Mat. modelirovanie, 16:5 (2004), 83–93 | MR
[10] S. Bosnyakov, I. Kursakov, A. Lysenkov, S. Matyash, S. Mikhailov, V. Vlasenko, J. Quest, “Computational tools for supporting the testing of civil aircraft configurations in wind tunnels”, Progress in Aerospace Sciences, 44:2 (2008), 67–120 | DOI
[11] M. E. Ilin, Approksimatsiia i interpoliatsiia, Izd-vo RGRTA, Riazan, 2003, 56 pp.
[12] B. Fornberg, “Generation of finite difference formulas on arbitrarily spaced grids”, Math. Computation, 51:184 (1988), 699–706 | DOI | MR | Zbl
[13] W. M. Rees, A. Leonard, D. I. Pullin, P. Koumoutsakos, “A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds number”, J. Comput. Physics, 230 (2011), 2794–2805 | DOI | MR | Zbl
[14] S. V. Mikhaylov, V. V. Vlasenko, “Programma ZEUS dlia rascheta nestatsionarnykh techenii v ramkah podhodov RANS i LES”, Materialy XX shkoly-seminara “Aerodinamika letatelnykh apparatov” (pos. Volodarskogo, 2009)
[15] S. M. Bosniakov, “Kontseptsiia programmnogo produkta EWT-TsAGI i osnovnye etapy ee razvitiia”, Trudy TsAGI, 2671, 2007, 3–19
[16] R. Zhang, M. Zhang, C. W. Shu, “On the order of accuracy and numerical performance of two classes of finite volume WENO schemes”, Comm. Comput. Physics, 9:3 (2011), 807–827 | DOI | MR | Zbl