Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_9_a7, author = {V. A. Miryaha and I. B. Petrov}, title = {Discontinuous {Galerkin} method for simulation of ice flow impact on vertical cylinder offshore structure}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {111--134}, publisher = {mathdoc}, volume = {30}, number = {9}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_9_a7/} }
TY - JOUR AU - V. A. Miryaha AU - I. B. Petrov TI - Discontinuous Galerkin method for simulation of ice flow impact on vertical cylinder offshore structure JO - Matematičeskoe modelirovanie PY - 2018 SP - 111 EP - 134 VL - 30 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_9_a7/ LA - ru ID - MM_2018_30_9_a7 ER -
%0 Journal Article %A V. A. Miryaha %A I. B. Petrov %T Discontinuous Galerkin method for simulation of ice flow impact on vertical cylinder offshore structure %J Matematičeskoe modelirovanie %D 2018 %P 111-134 %V 30 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2018_30_9_a7/ %G ru %F MM_2018_30_9_a7
V. A. Miryaha; I. B. Petrov. Discontinuous Galerkin method for simulation of ice flow impact on vertical cylinder offshore structure. Matematičeskoe modelirovanie, Tome 30 (2018) no. 9, pp. 111-134. http://geodesic.mathdoc.fr/item/MM_2018_30_9_a7/
[1] Nagruzki i vozdeistviia na gidrotekhnicheskie sooruzheniia (volnovie, ledovie i ot sudov), SNIP 2.06.04-82, 2012
[2] Pravila Rossiiskogo Morskogo registra sudokhodstva PBU/MSP, 2014
[3] P. Bergan, G. Cammaert, G. Skeie, V. Tharigopula, “On the potential of computational methods and numerical simulation in ice mechanics”, IOP Conference Series: Materials Science and Engineering, 10 (2010), 012102
[4] J.P. Dempsey, “Research trends in ice mechanics”, Int. J. Solids Struct., 37 (2000), 131–153
[5] Z.P. Bazant, “Fracture Analysis and Size Effects in Failure of Sea Ice”, The Mechanics of Solids: History and Evolution, A Festschrift in Honor of Arnold Kerr, eds. M.H. Santare, Michael J. Chajes, University of Delaware Press, Newark, Delaware, 2008, 151–170
[6] M.A. Nessim, M.S. Cheung, I.J. Jordaan, “Ice action on fixed offshore structures: a state-of-the-art review”, Can. J. Civ. Eng., 14 (1987), 381–407
[7] W. Lu, S. Loset, R. Lubbad, “Simulating ice-sloping structure interactions with the cohesive element method”, Proc. of the ASME 31st International Conference on Ocean, Offshore and Arctic Engineering, 2012, 1–10
[8] A.T. Bekker, Veroiatnostnye kharakteristiki ledovykh nagruzok na sooruzheniia kontinentalnogo shelfa, Dalnauka, Vladivostok, 2005
[9] C. Petrich, H. Eicken, “Growth, structure and properties of sea ice”, Sea Ice-An Introduction to Its Physics, Biology, Chemistry and Geology, eds. Thomas D. N., Dieckmann G. S., Blackwell Scientific, London, 2010, 22–77
[10] E. Schulson, P. Duval, Creep and Fracture of Ice, Cambridge University Press, 2009
[11] V.N. Smirnov, V.U. Mironov, “Issledovaniia prochnosti, morphometrii i dinamiki lda v inzhenernykh zadachakh pri osvoenii shelpha v zamerzayushchikh moriah”, Problemy Arktiki i Antarktiki, 85:2 (2010), 5–15
[12] L. Strub-Klein, Field Measurements and Analysis of the Morphological, Physical and Mechanical Properties of Level Ice and Sea Ice Ridges, Thesis for the degree of Philosophiae Doctor Trondheim, Norwegian University of Science and Technology, April 2012
[13] R.V. Goldstein, N.M. Osipenko, “Some aspects of strength in sea ice mechanics”, Physical Mesomechanics, 18:2 (2015), 139–148
[14] A. Kovacs, Sea Ice: Part II. Estimating the Full-Scale Tensile, Flexural, and Compressive Strength of First-Year Ice, CRREL Report 96-11, Sept., 1996
[15] M. Gabrielsen et al., “Comparison of physical and mechanical properties of coastal ice and level ice”, Proc. of 19th IAHR International Symposium on Ice (Canada, 2008), 1–10
[16] G. Timco, W. Weeks, “A review of the engineering properties of sea ice”, Cold Regions Science and Technology, 60 (2010), 107–129
[17] A. Palmer, K. Croasdale, Arctic Offshore Engineering, World Scientific Publishing Company, Singapore, 2012
[18] T. Sain, R. Narasimhan, “Constitutive modeling of ice in the high strain rate regime”, Int. J. of Solids and Structures, 48 (2011), 817–827
[19] M. Määttänen, “Numerical Simulation of Ice-Induced Vibrations in Offshore Structures”, Keynote Lecture, Proc. 14th Nordic Seminar on Computational Mechanics (Lund, Sweden, 2001), Lund University, 13–28
[20] R. Staroszczyk, “Loads on an Off-Shore Structure due to an Ice floe Impact”, Archives of Hydro-Engineering and Environmental Mechanics, 54:2 (2007), 77–94
[21] K. Muggeridge, I. Jordaan, “Microstructural change in ice: III. Observations from an iceberg impact zone”, Journal of Glaciology, 45:151 (1999), 449–455
[22] I. Jordaan, “Mechanics of ice-structure interaction”, Engineering Fracture Mechanics, 68 (2001), 1923–1960
[23] M. Lau, “A Three-Dimensional Discrete Element Simulation of Ice Sheet Impacting a 60$^\circ$ conical Structure”, Proceedings of the 16th International POAC conference (Ottawa, Ontario, Canada, 2001)
[24] Hai Li, Yu Liu, Xiang Jun Bi et al., “Numerical Simulation of Sea Ice Compressional Strength with Discrete Element Model”, Advanced Materials Research, 268–270 (2011), 913–918
[25] J. Paavilainen, J. Tuhkuri, A. Polojarvi, “Discrete Element Simulation of Ice Pile-Up Against an Inclined Structure”, 18th IAHR International Symposium on Ice (2006), 177–184
[26] M. Lau, K.P. Lawrence, L. Rothenburg, “Discrete element analysis of ice loads on ships and structures”, Ships and Offshore Structures, 6:3 (2011), 211–221
[27] T. Berglund, Ice fracture model for real-time ship simulator, Ph.D. thesis, Umeøa University, Faculty of Science and Technology, Department of Physics, 2012, 82 pp.
[28] Y. Yamauchi, K. Kamesaki, M. Hyodo, “Numerical Simulation on Ice-Structure Interaction during Earthquakes”, Proceedings of the 20th international offshore and polar engineering conference (Beijing, 2010)
[29] E. Kim, Experimental and numerical studies related to the coupled behavior of ice mass and steel structures during accidental collisions, Ph.D. thesis, Norwegian University of Science and Technology, 2014
[30] B. Sand, Nonlinear finite element simulations of ice forces on offshore structure, Doctoral thesis, Luleøa University of Technology, 2008
[31] I.J. Jordaan, J. Wells, J. Xiao et al., “Ice crushing and cyclic loading in compression”, Proceedings of the 19th IAHR International Symposium on Ice (Vancouver, British Columbia, Canada, 2008), 1011–1023
[32] D. Hilding, J. Forsberg, A. Gurtner, “Simulation of Loads from Drifting Ice Sheets on Offshore Structures”, Proceedings of the 12th International LS-DYNA Users Conference (2012), 1–8
[33] K. Hyunwook, “Simulation of compressive ‘Cone-Shaped’ ice specimen experiments using LS-DYNA”, Proceedings of the 12th International LS-DYNA Users Conference (2014), 1–9
[34] D. Hamid, B. Sand, “Numerical Simulation of the Ice-Structure Interaction in LS-DYNA”, 8th European LS-DYNA Users Conference (Strasbourg, 2011), 8504
[35] B. Sand, L. Fransson, “Numerical simulation of level ice loads on Norstromsgrund lighthouse”, Intern. Conf. on Cold Climate Technology (26–28 May, 2014, Narvik, Norway)
[36] Derradji-Aouat A., G.J. Earle, “Ship-Structure Collisions: Development of a Numerical Model for Direct Impact Simulations”, Proceedings of the Thirteenth International Offshore and Polar Engineering Conference (Honolulu, Hawaii, USA, 2003), v. 5, 520–527
[37] R.E. Gagnon, J. Wang, “Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel”, Cold Regions Science and Technology, 81 (2012), 26–35
[38] J. Shunying, L. Shewen, “Interaction between sea ice/iceberg and ship structures: A review”, Advances in Polar Science, 23:4 (2013), 187–195
[39] S. Kan, W. Tangborn, “Calculation of the Size of the Iceberg Struck by the Oil tanker Overseas Ohio”, 14th IAHR Symposium on Ice (1997)
[40] Gao Yan, Hu Zhiqiang, Wang Jin, “Sensitivity Analysis for Iceberg Geometry Shape in Ship-Iceberg Collision in View of Different Material Models”, Mathematical Problems in Engineering, 2014 (2014), 414362, 11 pp.
[41] I.A. Stepanyuk, V.N. Smirnov, Metody izmerenii kharacteristic dinamiki morskogo lda, Gidrometeoizdat, Sankt-Peterburg, 2001
[42] Z. Liu, J. Amdahl, S. Loset, “Plasticity based material modelling of ice and its application to ship-iceberg impacts”, Cold Reg. Sci. Technol., 65 (2011), 326–334
[43] D. Hilding, J. Forsberg, A. Gurtner, “Simulation of ice action loads on offshore structures”, 8$^{\mathrm{th}}$ European LS-DYNA Users Conference (Strasbourg, 2011)
[44] Yan Gao, Zhiqiang Hu, J.W. Ringsberg, Jin Wang, “An elastic-plastic ice material model for ship-iceberg collision simulations”, Ocean Engineering, 102 (2015), 27–39
[45] V.D. Ivanov, V.I. Kondaurov, I.B. Petrov, A.S. Kholodov, “Raschet dinamicheskogo deformirovaniia i razrusheniia uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami”, Matem. Modelirovanie, 2:11 (1990), 10–29
[46] V.A. Lobanov, “Modelirovanie lda v zadachakh s konechno-elementnoi postanovkoi”, Differencialnye uravneniia i protsessi upravleniia, 2008, no. 4, 19–29
[47] A.N. Prokudin, V.N. Odinokov, “Chislennoe issledovanie protsessa razrusheniia ledianogo pokrova s uchetom szhimaemosti i neodnorodnosti”, Vychislitelnaia mekhanika sploshnykh sred, 6:1 (2013), 110–118
[48] W.F. Weeks, On sea ice, University of Alaska Press, 2010
[49] G.E. Frankenstein, R. Garner, “Equation for determining the brine volume of sea ice from $-0.5$ to $-22.9^\circ$ C”, J. Glaciol., 6:48 (1967), 943–944
[50] Yu.N. Orlova, Kompleksnoe teoretiko-eksperimentalnoe issledovanie povedeniia lda pri udarnykh i vzryvnykh nagruzkakh, kand. diss., Tomskii Gosuniversitet, Tomsk, 2014
[51] Abaqus Crushable foam plasticity models, , 2015 http://www.egr.msu.edu/software/abaqus/Documentation/docs/v6.7/books/usb/default.htm?startat=pt05ch18s03abm32.html
[52] M. Torstein, Iceberg shape characterization for damage assessment of accidental impacts with ships and offshore structures, 2013
[53] R. Duddu, H. Waisman, “A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets”, Computational Mechanics, 51:6 (2013), 961–974
[54] M. Dumbser, M. Kaser, “An Arbitrary High Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes II: The Three-Dimensional Isotropic Case”, Geophysical Journal International, 171:3 (2007), 1324
[55] R.L. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University Press, Cambridge, 2002
[56] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics, 2nd ed., Springer, 1999
[57] L.C. Wilcox, G. Stadler, C. Burstedde, O. Ghattas, “A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media”, Journal of Computational Physics, 229 (2010), 9373–9396
[58] A.G. Kulikovskii, N.V. Pogorelov, A.Y. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman and Hall/CRC, Boca Raton, 2001
[59] M. Kaser, M. Dumbser, “An Arbitrary High Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes II: The Three-Dimensional Isotropic Case”, Geophysical Journal International, 171:3 (2007), 1324
[60] C. Pelties et al., “Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes”, Journal of Geophysical Research: Solid Earth, 117:2 (2012), 1–15
[61] V.A. Miryaha, A.V. Sannikov, I.B. Petrov, “Discontinuous Galerkin method for numerical simulation of dynamic processes in solids”, Mathematical Models and Computer Simulations, 7:5 (2015), 446–455
[62] V.A. Biryukov, V.A. Miryakha, I.B. Petrov, “Analysis of the Dependence of the global load dependence on ice properties for the interaction between an ice field and a structure by a numerical simulation”, Doklady Mathematics, 474:6 (2017), 327–330
[63] V.A. Biryukov, V.A. Miryakha, I.B. Petrov, N.I. Khoklov, “Simulation of elastic wave propagation in geological media: Intercomparison of three numerical methods”, Comput. Math. and Math. Phys., 56:6 (2016), 1086–1095
[64] Quasi-Static Analyses, Lecture 5, e-library ABAQUS, http://imechanica.org/files/l5-quasi-static.pdf
[65] G. Van der Bergen, “Efficient collision detection of complex deformable models using AABB trees”, Journal of Graphics Tools, 4:2 (1997), 1–13
[66] A.V. Sannikov, V.A. Miryaha, I.B. Petrov, “Numerical simulation of ice strength experiments”, Proceedings of the Third International Scientific Conference “Polar Mechanics” (27–30 September 2016, Vladivostok, Russia, 2016), 141–150