Simulation of the process of carbon nanotubes system self-organization
Matematičeskoe modelirovanie, Tome 30 (2018) no. 9, pp. 100-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we developed a coarse grained numerical model for simulation of a selforganization process of carbon nanotubes system under applied electric field. The model describes polarization of nanotubes in the system with electric field and also includes Van der Waals interaction between nanotubes. We developed an iterative algorithm of particle charge calculation in nanotube that provides a significant speedup of the calculation. Another advantage of this algorithm is better scaling of the calculation time as a function of system size. The results of the model application for calculation of selforganization process dynamics of carbon nanotubes are demonstrated.
Keywords: coarse grained modeling, self-organization
Mots-clés : coulomb interaction, carbon nanotubes.
@article{MM_2018_30_9_a6,
     author = {A. A. Knizhnik and I. A. Iudintsev},
     title = {Simulation of the process of carbon nanotubes system self-organization},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {100--110},
     publisher = {mathdoc},
     volume = {30},
     number = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_9_a6/}
}
TY  - JOUR
AU  - A. A. Knizhnik
AU  - I. A. Iudintsev
TI  - Simulation of the process of carbon nanotubes system self-organization
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 100
EP  - 110
VL  - 30
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_9_a6/
LA  - ru
ID  - MM_2018_30_9_a6
ER  - 
%0 Journal Article
%A A. A. Knizhnik
%A I. A. Iudintsev
%T Simulation of the process of carbon nanotubes system self-organization
%J Matematičeskoe modelirovanie
%D 2018
%P 100-110
%V 30
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_9_a6/
%G ru
%F MM_2018_30_9_a6
A. A. Knizhnik; I. A. Iudintsev. Simulation of the process of carbon nanotubes system self-organization. Matematičeskoe modelirovanie, Tome 30 (2018) no. 9, pp. 100-110. http://geodesic.mathdoc.fr/item/MM_2018_30_9_a6/

[1] C.A. Martin, J.K.W. Sandler, A.H. Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, “Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites”, Polymer, 46 (2005), 877–886

[2] C. Park, J. Wilkinson, S. Banda, Z. Ounaies, K.E. Wise, G. Sauti, P.T. Lillehei, J.C. Harrison, “Aligned single-wall carbon nanotube polymer composites using an electric field”, Polymer Physics, 44 (2006), 1751–1762

[3] Chen Lin, Jerry W. Shan, “Electrically tunable viscosity of dilute suspensions of carbon nanotubes”, Physics of Fluids, 19 (2007)

[4] Cunjiang Yu, Charan Masarapu, Jiepeng Rong, Bingqing Wei, Hanqing Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon-Nanotube Macrofilms”, Advanced Materials, 21 (2009), 4793–4797

[5] Thomas Rueckes, Kyoungha Kim, Ernesto Joselevich, Greg Y. Tseng, Chin-Li Cheung, Charles M. Lieber, “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing”, Science, 289, 94–97

[6] Zhao Wang, Michel Devel, Rachel Langlet, Bernard Dulmet, “Electrostatic deflections of cantilevered semiconducting single-walled carbon nanotubes”, Physical Review B, 75 (2007)

[7] Zhao Wang, Michel Devel, “Electrostatic deflections of cantilevered metallic carbon nanotubes via charge-dipole model”, Physical Review B, 76 (2007)

[8] A.I. Oliva-Avile's, F. Avile's, V. Sosa, G.D. Seidel, “Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields”, Carbon, 69 (2014), 342–354

[9] G. Belijar, Z. Valdez-Nava, S. Diaham, L. Laudebat, T. B. Jones, T. Lebey, “Dynamics of particle chain formation in a liquid polymer under an electric field: modeling and experiments”, Journal of Physics D: Applied Physics, 50 (2017)

[10] Daan Frenkel, Understanding Molecular Simulation, Academic press, A Division of Harcourt, 292–300

[11] L.A. Girifalco, “Interaction potential for carbon (C60) molecules”, The Journal of Physical, 95 (1991), 5370–5371

[12] Erik Bitzek, Pekka Koskinen, Franz Gahler, Michael Moseler, Peter Gumbsch, “Structural Relaxation Made Simple”, Physical Review Letters, 97