Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_9_a5, author = {V. V. Kurtc and I. E. Anufriev}, title = {Multirate solver with speed and gap error control for vehicular traffic simulation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {87--99}, publisher = {mathdoc}, volume = {30}, number = {9}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_9_a5/} }
TY - JOUR AU - V. V. Kurtc AU - I. E. Anufriev TI - Multirate solver with speed and gap error control for vehicular traffic simulation JO - Matematičeskoe modelirovanie PY - 2018 SP - 87 EP - 99 VL - 30 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_9_a5/ LA - ru ID - MM_2018_30_9_a5 ER -
V. V. Kurtc; I. E. Anufriev. Multirate solver with speed and gap error control for vehicular traffic simulation. Matematičeskoe modelirovanie, Tome 30 (2018) no. 9, pp. 87-99. http://geodesic.mathdoc.fr/item/MM_2018_30_9_a5/
[1] M. Treiber, A. Kesting, Traffic Flow Dynamics, Springer, Berlin, 2013, 503 pp.
[2] A.V. Gasnikov, Vvedenie v matematicheskoe modelirovanie transportnykh potokov, MFTI, M., 2010, 362 pp.
[3] G. Orosz, R.E. Wilson, B. Krauskopf, “Global bifurcation investigation of an optimal velocity traffic model with driver reaction time”, Phys. Rev. E, 70 (2004), 026207
[4] A. Tordeux, S. Lassarre, M. Roussignol, “An adaptive time gap car-following model”, Transportation Research Part B, 44 (2010), 1115–1131
[5] C. Gear, D. Wells, “Multirate linear multistep methods”, BIT, 24:4 (1984), 484–502
[6] M. Gunther, A. Kvœrnø, P. Rentrop, “Multirate partitioned Runge-Kutta methods”, BIT, 41 (2001), 504–514
[7] V. Savcenco, W. Hundsdorfer, J. G. Verwer, “A multirate time stepping strategy for stiff ordinary differential equations”, BIT, 47 (2007), 137–155
[8] A.B. Korchak, A.V. Evdokimov, “Metod parallelnogo rascheta rasshcheplennykh sistem differentsialnykh uravnenii s kratnimi shagami”, Trudy MFTI, 2:2 (2010), 77–85
[9] V.V. Kurtc, I.E. Anufriev, “Multirate numerical scheme for large-scale vehicle traffic simulation”, Mathematical Models and Computer Simulations, 8:6 (2016), 744–751
[10] H.J. Payne, “Models of freeway traffic and control”, Mathematical Models of Public Systems, Simulation Council Proc. 28, v. 1, ed. G. A. Bekey, 1971, 51–61
[11] B.S. Kerner, P. Konhäuser, “Cluster effect in initially homogeneous traffic flow”, Phys. Rev. E, 48 (1993), 2335–2338
[12] A.A. Chechina, N.G. Churbanova, M. A. Trapeznikova, “Two-dimensional hydrodynamic model for traffic flow simulation using parallel computer systems”, Proceedings of the international conference of the numerical analysis and applied mathematics 2014, AIP Conference Proceedings, 1648, 2015, 530007
[13] R. Jiang, Q. Wu, Z. Zhu, “Full velocity difference model for a car-following theory”, Physical Review E, 64:1 (2001), 017101.1–017101.4
[14] M. Treiber, A. Kesting, D. Helbing, “Delays, inaccuracies and anticipation in microscopic traffic models”, Physica A, 360:1 (2006), 71–88
[15] I. Lubashevsky, P. Wagner, R. Manhke, “A bounded rational driver model”, European Physical Journal B, 32 (2003), 243–247
[16] A. Kvœrnø, “Stability of multirate Runge-Kutta schemes”, Int. J. Differ. Equ. Appl., 1(A) (2000), 97–105
[17] S. Skelboe, “Stability properties of backward differentiation multirate formulas”, Appl. Numer. Math., 5 (1989), 151–160
[18] Verhoeven et al., Stability analysis of the BDF slowest first multirate methods, CASAReport No 0704, 895–923
[19] V. Kurtc, I. Anufriev, “Local stability conditions and calibrating procedure for new carfollowing models used in driving simulators”, Proceedings of the 10th Conference on Traffic and Granular Flow'13, 2015, 453–461