Godunov type method and the Shafranov's task for multi-temperature plasma
Matematičeskoe modelirovanie, Tome 30 (2018) no. 9, pp. 51-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

New multi-temperature code for the multi-component gas-dynamic was tested. The velocities of all components with nonzero masses are assumed to be identical. Method operates with the table equation of state. Method can include in the consideration the electron heat conduction, the radiation transfer, the exchange the energy between the components, and the chemical reactions. The gas-dynamic part is based on the Godunov approach with the effective approximate Riemann problem solver and the model of the local equation of state. The goal of the investigation is the test of the development of the code and the "exact" solution of the Shafranov task for the shock wave in the hydrogen plasma.
Keywords: multi-temperature plasma, equation of state, Godunov type scheme.
@article{MM_2018_30_9_a3,
     author = {A. G. Aksenov and V. F. Tishkin and V. M. Chechetkin},
     title = {Godunov type method and the {Shafranov's} task for multi-temperature plasma},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {51--71},
     publisher = {mathdoc},
     volume = {30},
     number = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_9_a3/}
}
TY  - JOUR
AU  - A. G. Aksenov
AU  - V. F. Tishkin
AU  - V. M. Chechetkin
TI  - Godunov type method and the Shafranov's task for multi-temperature plasma
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 51
EP  - 71
VL  - 30
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_9_a3/
LA  - ru
ID  - MM_2018_30_9_a3
ER  - 
%0 Journal Article
%A A. G. Aksenov
%A V. F. Tishkin
%A V. M. Chechetkin
%T Godunov type method and the Shafranov's task for multi-temperature plasma
%J Matematičeskoe modelirovanie
%D 2018
%P 51-71
%V 30
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_9_a3/
%G ru
%F MM_2018_30_9_a3
A. G. Aksenov; V. F. Tishkin; V. M. Chechetkin. Godunov type method and the Shafranov's task for multi-temperature plasma. Matematičeskoe modelirovanie, Tome 30 (2018) no. 9, pp. 51-71. http://geodesic.mathdoc.fr/item/MM_2018_30_9_a3/

[1] S.K. Godunov, “A Difference Scheme for the shock wave calculations”, Usp. Mat. Nauk, 12:1(73) (1957), 176–177

[2] G.V. Vereshchagin, A. G. Aksenov, Relativistic Kinetic Theory, Cambridge University Press, 2017

[3] S.K. Godunov, “A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations”, Math. Sbornik, 47(89):3 (1959), 271–306

[4] P. Colella, P. R. Woodward, “The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations”, Journal of Computational Physics, 54 (1984), 174

[5] P.L. Roe, “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes”, Journal of Computational Physics, 135 (1997), 250

[6] P. Colella, H. M. Glaz, “Efficient Solution Algorithms for the Riemann Problem for Real Gases”, Journal of Computational Physics, 59 (1985), 264

[7] M. M. Basko, M. D. Churazov, A. G. Aksenov, “Prospects of heavy ion fusion in cylindrical geometry”, Laser and Particle Beams, 20 (2002), 411–414

[8] S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, Y.V. Petrov, V. A. Khokhlov, “Ablated matter expansion and crater formation under the action of ultrashort laser pulse”, Soviet Journal of Experimental and Theoretical Physics, 103 (2006), 183–197

[9] V.E. Fortov, D.H. Hoffmann, B. Y. Sharkov, “Reviews of topical problems: Intense ion beams for generating extreme states of matter”, Physics Uspekhi, 51:2 (2008), 109–131

[10] S.W. Bruenn, “Stellar core collapse: numerical model and infall epoch”, ApJS, 58 (1985), 771

[11] M. Pelanti, K.-M. Shyue, “A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves”, Journal of Computational Physics, 259 (2014), 331–357

[12] V.T. Zhukov, A.V. Zabrodin, O. B. Feodoritova, “A method for solving two-dimensional equations of heat-conducting gas dynamics in domains of complex configurations”, J. Comp. Math. and Math. Physics, 33:8 (1993), 1099–1108

[13] G.H. Miller, E. G. Puckett, “A high-order Godunov method for multiple condensed phases”, Journal of Computational Physics, 128 (1996), 134–164

[14] A. G. Aksenov, M. D. Churazov, “Ignition problems for advanced fuel”, Nuclear Instruments and Methods in Physics Research, A 464 (2001), 180–184

[15] A. G. Aksenov, M. D. Churazov, “Deuterium targets and the MDMT code”, Laser and Particle Beams, 21:1 (2003), 81–84

[16] A. G. Aksenov, M. D. Churazov, A. A. Golubev, D. G. Koshkarev, E. A. Zabrodina, “Cylindrical targets for heavy ions fusion”, Nuclear Instruments and Methods in Physics Research, A 544 (2005), 412

[17] V.M. Chechetkin, A.G. Aksenov, “Supernova-Explosion Mechanism Involving Neutrinos”, Nucl. Phys., 81:1 (2018)

[18] V. D. Shafranov, “A structure of the shock wave in the plasma”, JEIP, 5 (1957), 1183

[19] A.G. Aksenov, “Computation of shock waves in plasma”, Computational Mathematics and Mathematical Physics, 55 (2015), 1752

[20] M.M. Basko, “Metallic equation of state in the maen ion approximation”, Sov. J. Plasma Phys., 10 (1984), 689–694

[21] C. W. Gear, Numerical initial value problems in ordinary differential equations, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1971