The Rayleigh--Taylor instability development in the equatorial ionosphere and an initial irregularities geometry
Matematičeskoe modelirovanie, Tome 30 (2018) no. 9, pp. 21-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical modeling was carried out for the equatorial Earth ionosphere F-region of conditions by means of the two-dimensional mathematical MI2 model coordinated electrodynamically. It is shown that ionospheric bubbles development time rather strongly depends on the vertical scale of the initial irregularity and strongly depends on the horizontal scale. The ionospheric bubbles developed more slowly at instability generation by a plasma increase, than at instability generation by plasma decrease. Three metric thresholds at initial irregularity scale increase are found experimentally.
Keywords: ionosphere, Rayleigh Taylor instability, mathematical modeling, numerical modeling, metric threshold.
Mots-clés : initial perturbation
@article{MM_2018_30_9_a1,
     author = {N. M. Kashchenko and S. A. Ishanov and S. V. Matsievsky},
     title = {The {Rayleigh--Taylor} instability development in the equatorial ionosphere and an initial irregularities geometry},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {30},
     number = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_9_a1/}
}
TY  - JOUR
AU  - N. M. Kashchenko
AU  - S. A. Ishanov
AU  - S. V. Matsievsky
TI  - The Rayleigh--Taylor instability development in the equatorial ionosphere and an initial irregularities geometry
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 21
EP  - 32
VL  - 30
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_9_a1/
LA  - ru
ID  - MM_2018_30_9_a1
ER  - 
%0 Journal Article
%A N. M. Kashchenko
%A S. A. Ishanov
%A S. V. Matsievsky
%T The Rayleigh--Taylor instability development in the equatorial ionosphere and an initial irregularities geometry
%J Matematičeskoe modelirovanie
%D 2018
%P 21-32
%V 30
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_9_a1/
%G ru
%F MM_2018_30_9_a1
N. M. Kashchenko; S. A. Ishanov; S. V. Matsievsky. The Rayleigh--Taylor instability development in the equatorial ionosphere and an initial irregularities geometry. Matematičeskoe modelirovanie, Tome 30 (2018) no. 9, pp. 21-32. http://geodesic.mathdoc.fr/item/MM_2018_30_9_a1/

[1] S.L. Ossakow, S.T. Zalesak, B.E. McDonald, P.K. Chaturvedi, “Nonlinear equatorial spread-F: Dependence of altitude of the F-peak and bottomside background electron density gradient scale length”, J. Geophys. Res., A84:1 (1979), 17–39

[2] C.R. Martinis, M.J. Mendillo, J. Aarons, “Toward a synthesis of equatorial spread-F onset and suppression during geomagnetic storms”, J. Geophys. Res., 110 (2005), A07306 | DOI

[3] H. Kil, R.A. Heelis, L.J. Paxton, S.J. Oh, “Formation of a plasma depletion shell in the equatorial ionosphere”, J. Geophys. Res., 114:11 (2009), A11302

[4] D.L. Hysell, E. Kudeki, J.L. Chau, “Possible ionospheric preconditioning by shear flow leading to equatorial spread F”, Annales Geophysicae, 23 (2005), 2647–2655

[5] S.T. Zalesak, S.L. Ossakow, P.K. Chaturvedi, “Nonlinear equatorial spread-F: the effect of neutral winds and background Pedersen conductivity”, J. Geophys. Res., 87:1 (1982), 151–166

[6] B.N. Gershman, Dinamika ionosfernoi plazmy, Nauka, M., 1974

[7] S. Matsievsky, N. Kashchenko, S. Ishanov, L. Zinin, “3D-modelirovanie ekvatorialnogo F-rasseianiia: sravnenie modelei MI3 i SAMI3”, Vestnik Baltiiskogo federalnogo universiteta im. I. Kanta, 2013, no. 4, 102–105

[8] N.M. Kashchenko, S.V. Matsievsky, “Matematicheskoe modelirovanie neustoichivostei ekvatorialnogo F-sloia ionosfery”, Vestnik Kaliningradskogo gosudarstvennogo universiteta. Ser. Informatika i telekommunikatsii, 2003, no. 3, 59–68

[9] M.N. Fatkullin, Yu.S. Sitnov, “Dipoliarnaya sistema koordinat i ee nekotorye osobennosti”, Geomagnetizm i Aeronomiia, 12:2 (1972), 333–335

[10] A.E. Hedin, J.E. Salah, J.V. Evans et al., “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 1. N2 density and temperature”, J. Geophys. Res., 82:A1 (1977), 2139–2147

[11] A.E. Hedin, C.A. Reber, G.P. Newton et al., “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 2. Composition”, J. Geophys. Res., 82:A1 (1977), 2148–2156

[12] Guide to reference and standard ionosphere models, American Institute of Aeronautics and Astronautics, 2011

[13] J.D. Huba, G. Joyce, J. Krall, “Three-dimensional modeling of equatorial spread F”, Aeronomy of the Earth's atmosphere and ionosphere, v. 2, IAGA Special Sopron Book Series, 2011, 211–218

[14] V.V. Medvedev, S.A. Ishanov, V.I. Zenkin, “Self-consistent model of the lower ionosphere”, Geomagnetism and Aeronomy, 42:6 (2002), 745–754

[15] V.V. Medvedev, S.A. Ishanov, V.I. Zenkin, “Effect of vibrationally excited nitrogen on recombination in ionospheric plasma”, Geomagnetism and Aeronomy, 43:2 (2003), 231–238

[16] S.A. Ishanov, L.V. Zinin, S.V. Klevtsur, S.V. Matsievsky, V.I. Saveliev, “Modelirovanie dolgotnykh variatsii parametrov ionosfery Zemli”, Matem. modelir., 28:3 (2016), 64–78

[17] D.N. Anderson, P.A. Berhardt, “Modelling the effects of an H-gas release on the equatorial ionosphere”, J. Geophys. Res., 83:15 (1978), 4777–4790

[18] P.A. Bernhardt, “Three-Dimensional, Time-Dependent Modeling of Neutral Gas Diffusion in a Nonuniform, Chemically Reactive Atmosphere”, J. Geophys. Res., 84 (1979), 793–802

[19] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, V. S. Chevanin, “A Version of Essentially Nonoscillatory High Order Accurate Difference Schemes for Systems of Conservation Laws”, Mathematical Models and Computer Simulations, 2:3 (2010), 304–316

[20] A.V. Safronov, “Otsenka tochnosti i sravnitelnyi analiz raznostnykh skhem skvoznogo scheta povyshennogo poriadka”, Vych. metody i programmir., 11:1 (2010), 137–143

[21] B. Van Leer, “Upwind and high-resolution methods for compressible flow: from donor cell to residual-distribution schemes”, Commun. Comp. Phys., 6 (2006), 192–206