Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_9_a0, author = {V. A. Balashov}, title = {Direct numerical simulation of moderately rarefied gas flow within core samples}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--20}, publisher = {mathdoc}, volume = {30}, number = {9}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_9_a0/} }
V. A. Balashov. Direct numerical simulation of moderately rarefied gas flow within core samples. Matematičeskoe modelirovanie, Tome 30 (2018) no. 9, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2018_30_9_a0/
[1] C. Soulaine, F. Gjetvaj, C. Garing, S. Roman, A. Russian, P. Gouze, H.A. Tchelepi, “The Impact of Sub-Resolution Porosity of X-ray Microtomography Images on the Permeability”, Transport in Porous Media, 113:1 (2016), 227–243
[2] M.J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, C. Pentland, “Pore-scale imaging and modelling”, Advances in Water Resources, 51 (2013), 197–216
[3] H. Dong, M.J. Blunt, “Pore-network extraction from micro-computerized-tomography images”, Phys. Rev. E, 80:3 (2009), 036307
[4] P. Ranut, E. Nobile, L. Mancini, “High resolution X-ray microtomography-based CFD simulation for the characterization of flow permeability and effective thermal conductivity of aluminum metal foams”, Experimental Thermal and Fluid Science, 67 (2015), 30–36
[5] J. Escoda, F. Willot, D. Jeulin, J. Sanahuja, C. Toulemonde, “Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image”, Cement and Concrete Research, 41:5 (2011), 542–556
[6] V.A. Balashov, “Direct numerical simulation of moderately rarefied gas flow within two-dimensional artificial porous media”, Math. Mod. Comp. Simul., 10:4 (2018)
[7] Yu.V. Sheretov, Dinamika sploshnyh sred pri prostranstvenno-vremennom osrednenii, RChD, M.–Izhevsk, 2009, 400 pp.
[8] B.N. Chetverushkin, Kinetic schemes and quasi-gasdynamic system of equations, CIMNE, Barcelona, 2008, 298 pp.
[9] T.G. Elizarova, Quasi-gas dynamic equations, Springer, Berlin–Heidelberg, 2009, 286 pp.
[10] GOST 26450.2-85 Porody gornye. Metody opredeleniia kollektorskikh svoistv. Metod opredeleniia koefficienta absoliutnoi gazopronitsaemosti pri statsionarnoi i nestatsionarnoi filtratsii
[11] L.J. Klinkenberg, “The permeability of porous media to liquids and gases”, Drilling and Production Practice, American Petroleum Institute, 1941, 200–213
[12] M.N. Kogan, Rarefied Gas Dynamics, Springer US, 1969, 515 pp.
[13] D.V. Sivuhin, Obshchii kurs fiziki, v. II, Termodinamika i molekuliarnaia fizika, Fizmatlit, M., 2003, 576 pp.
[14] A.A. Zlotnik, “On conservative spatial discretizations of the barotropic quasigasdynamic system of equations with a potential body force”, Comp. Math. and Math. Phys., 56:2 (2016), 303–319
[15] V.A. Balashov, V.E. Borisov, “Algoritm rascheta trekhmernyh techenii umerenno-razrezhennogo gaza v oblastiakh s vokselnoi geometriei”, Preprint IPM im. M.V. Keldysha, 2017, 099, 24 pp. | DOI
[16] , Imperial College London http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/
[17] K.S. Basniev, N.M. Dmitriev, R.D. Kanevskaya, V.M. Maksimov, Podzemnaia gidromekhanika, Institut Kompiuternykh Issledovanii, M.–Izhevsk, 2006, 488 pp.
[18] D.A. Bikulov, Modelirovanie iavlenii perenosa v poristykh sredakh na gibridnykh superkompiuternykh sistemah, Diss. ... kand. fiz.-mat. nauk, MGU im. M.V. Lomonosova, M., 2015
[19] W. Degruyter, A. Burgisser, O. Bachmann, O. Malaspinas, “Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices”, Geosphere, 6:5 (2010), 470–481
[20] Palabos: Parallel lattice Boltzmann solver, http://www.palabos.org/
[21] F.I. Kotyahov, Fizika neftyanykh i gazovykh kollektorov, Nedra, M., 1977, 287 pp.
[22] D. Tiab, E.C. Donaldson, Petrophysics. Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, Fourth edition, Gulf Professional Publishing, 2015, 918 pp.
[23] G.H. Tang, W.Q. Tang, Y.L. He, “Gas slippage effect on microscale porous flow using the lattice Boltzmann method”, Physical review E, 72:5 (2005), 056301
[24] J. Gao, Q. Yu, X. Lu, “Apparent Permeability and Gas Flow Behavior in Carboniferous Shale from the Qaidam Basin, China: An Experimental Study”, Transp. Porous Med., 116:2 (2017), 585–611
[25] N. Saxena, R. Hofmann, F.O. Alpak, J. Dietderich, S. Hunter, “Effect of image segmentation voxel size on micro-CT computed effective transport elastic properties”, Marne and Petroleum Geology, 86 (2017), 972–990
[26] J.G. Heid, J.J. McMahon, R.F. Nielsen, S.T. Yuster, “Study of the Permeability of Rocks to Homogeneous Fluids”, Drilling and Production Practice, American Petroleum Institute, 1950, 230–244
[27] F.O. Jones, W.W. Owens, “A Laboratory Study of Low-Permeability Gas Sands”, Journal of Petroleum Technology, 32:9 (1980), 1631–1640
[28] W. Tanikawa, T. Shimamoto, “Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks”, International Journal of Rock Mechanics and Mining Sciences, 46:2 (2009), 229–238