On the distribution of the time of the first communication release in wireless networks with caching
Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 131-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

The function analyzes the time distribution of the first communication failure in D2D wireless networks as a function of the caching time, assuming that subscribers make a nonstationary random walk. This distribution function is constructed numerically on the basis of generation of an ensemble of nonstationary trajectories, a series of incremental increments of which is determined by solving the Fokker–Planck equation in the unit square in the plane with mirror reflection conditions from the boundaries. This method allows you to effectively solve the problems of stochastic control and analyze the conditions for the stability of connections in wireless networks.
Keywords: wireless connection, caching, kinetic equation, random walk modeling, time distribution of the first clipping.
@article{MM_2018_30_8_a8,
     author = {Yu. N. Orlov and A. A. Russkov and Yu. V. Gaidamaka and K. E. Samouylov},
     title = {On the distribution of the time of the first communication release in wireless networks with caching},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {131--142},
     publisher = {mathdoc},
     volume = {30},
     number = {8},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_8_a8/}
}
TY  - JOUR
AU  - Yu. N. Orlov
AU  - A. A. Russkov
AU  - Yu. V. Gaidamaka
AU  - K. E. Samouylov
TI  - On the distribution of the time of the first communication release in wireless networks with caching
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 131
EP  - 142
VL  - 30
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_8_a8/
LA  - ru
ID  - MM_2018_30_8_a8
ER  - 
%0 Journal Article
%A Yu. N. Orlov
%A A. A. Russkov
%A Yu. V. Gaidamaka
%A K. E. Samouylov
%T On the distribution of the time of the first communication release in wireless networks with caching
%J Matematičeskoe modelirovanie
%D 2018
%P 131-142
%V 30
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_8_a8/
%G ru
%F MM_2018_30_8_a8
Yu. N. Orlov; A. A. Russkov; Yu. V. Gaidamaka; K. E. Samouylov. On the distribution of the time of the first communication release in wireless networks with caching. Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 131-142. http://geodesic.mathdoc.fr/item/MM_2018_30_8_a8/

[1] Petrov V., Moltchanov D., Kustarev P., Jornet J. M., Koucheryavy Y., “On the use of integral geometry for interference modeling and analysis in wireless networks”, IEEE Communications Letters, 20 (2016), 2530–2533 | DOI

[2] Samuylov A., Ometov A., Moltchanov D., Andreev S., Begishev V., Kovalchukov R., Gaidamaka Y., Samouylov K., Koucheryavy Y., “Analytical performance estimation of network-assisted D2D communications in urban scenarios with rectangular cells”, Transactions on Emerging Telecommunications Technologies, 28:2 (2017) | DOI

[3] Yang K., Zhao Z., Liu J., Liu Q. H., “Robust adaptive beamforming, using an iterative FFT algorithm”, Signal Processing, 96 (2014), 253–260 | DOI

[4] Gaidamaka Iu. V., Orlov Iu. N., Molchanov D. A., Samuilov A. K., “Modelirovanie otnosheniia signal/interferentsiia v mobilnoi seti so sluchainym bluzhdaniem vzaimo-deistvuiushchikh ustroistv”, Informatika i ee primenenie, 11:2 (2017), 50–58 | Zbl

[5] Orlov Y., Kirina-Lilinskaya E., Samuylov A., Ometov A., Moltchanov D., Gaidamaka Yu., Andreev S., Samouylov K., “Time-Dependent SIR Analysis in Shopping Malls Using Fractal-Based Mobility Models”, Lecture Notes in Computer Science, 10372, 16–25 | DOI

[6] Fedorov S. L., Orlov Iu. N., Metody chislennogo modelirovaniia protsessov nestatsionarnogo sluchainogo bluzhdaniia, MFTI, M., 2016

[7] Orlov Iu. N., Kineticheskie metody issledovaniia nestatsionarnykh vremennykh riadov, MFTI, M., 2014

[8] Durbin J., Distribution Theory for Tests Based on the Sample Distribution Function, Society for Industrial Applied Mathematics, Philadelphia, 1972 | MR

[9] Justel A., Pena D., Zamar R., “A multivariate Kolmogorov–Smirnov test of goodness of fit”, Statistics Probability Letters, 35 (1997), 251–259 | DOI | MR | Zbl

[10] Drew J. H., Glen A. G., Leemis L. M., “Computing the cumulative distribution function of the Kolmogorov–Smirnov statistic”, Computational Statistics and Data Analysis, 34 (2000), 1–15 | DOI | Zbl