Mathematical model of cavitational braking of a torus in the liquid after impact
Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 116-130

Voir la notice de l'article provenant de la source Math-Net.Ru

The process of cavity formation under vertical impact and subsequent braking of a torus of an elliptical cross-section semisubmerged into a liquid is investigated. The solution of the problem is constructed by means of a direct asymptotic method, effective at small times. A special problem with unilateral constraints is formulated on the basis of which the initial zones of a separation and contact of liquid particles are determined, as well as perturbations of the internal and external free boundaries of the liquid at small times. Limit cases of a degenerate and a thin torus are considered. In the case of a thin torus, the flow pattern corresponds to the 2D problem of cavitation braking of an elliptical cylinder in a liquid after a continuous impact.
Keywords: ideal incompressible liquid, torus of elliptical section, hydrodynamic impact, cavitation braking, asymptotics, free border, cavity, small times, Froude's number.
@article{MM_2018_30_8_a7,
     author = {M. V. Norkin},
     title = {Mathematical model of cavitational braking of a torus in the liquid after impact},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {116--130},
     publisher = {mathdoc},
     volume = {30},
     number = {8},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_8_a7/}
}
TY  - JOUR
AU  - M. V. Norkin
TI  - Mathematical model of cavitational braking of a torus in the liquid after impact
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 116
EP  - 130
VL  - 30
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_8_a7/
LA  - ru
ID  - MM_2018_30_8_a7
ER  - 
%0 Journal Article
%A M. V. Norkin
%T Mathematical model of cavitational braking of a torus in the liquid after impact
%J Matematičeskoe modelirovanie
%D 2018
%P 116-130
%V 30
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_8_a7/
%G ru
%F MM_2018_30_8_a7
M. V. Norkin. Mathematical model of cavitational braking of a torus in the liquid after impact. Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 116-130. http://geodesic.mathdoc.fr/item/MM_2018_30_8_a7/