Mathematical model of cavitational braking of a torus in the liquid after impact
Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 116-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

The process of cavity formation under vertical impact and subsequent braking of a torus of an elliptical cross-section semisubmerged into a liquid is investigated. The solution of the problem is constructed by means of a direct asymptotic method, effective at small times. A special problem with unilateral constraints is formulated on the basis of which the initial zones of a separation and contact of liquid particles are determined, as well as perturbations of the internal and external free boundaries of the liquid at small times. Limit cases of a degenerate and a thin torus are considered. In the case of a thin torus, the flow pattern corresponds to the 2D problem of cavitation braking of an elliptical cylinder in a liquid after a continuous impact.
Keywords: ideal incompressible liquid, torus of elliptical section, hydrodynamic impact, cavitation braking, asymptotics, free border, cavity, small times, Froude's number.
@article{MM_2018_30_8_a7,
     author = {M. V. Norkin},
     title = {Mathematical model of cavitational braking of a torus in the liquid after impact},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {116--130},
     publisher = {mathdoc},
     volume = {30},
     number = {8},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_8_a7/}
}
TY  - JOUR
AU  - M. V. Norkin
TI  - Mathematical model of cavitational braking of a torus in the liquid after impact
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 116
EP  - 130
VL  - 30
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_8_a7/
LA  - ru
ID  - MM_2018_30_8_a7
ER  - 
%0 Journal Article
%A M. V. Norkin
%T Mathematical model of cavitational braking of a torus in the liquid after impact
%J Matematičeskoe modelirovanie
%D 2018
%P 116-130
%V 30
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_8_a7/
%G ru
%F MM_2018_30_8_a7
M. V. Norkin. Mathematical model of cavitational braking of a torus in the liquid after impact. Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 116-130. http://geodesic.mathdoc.fr/item/MM_2018_30_8_a7/

[1] Sedov L. I., Two-dimensional problems of hydrodynamics and aerodynamics, Interscience Publications, New York, 1965, 448 pp. | MR

[2] Norkin M. V., “A cavity formation at the inclined separated impact on a circular cylinder under free surface of a heavy liquid”, Journal of Applied and Industrial Mathematics, 10:4 (2016), 538–548 | DOI | MR | Zbl

[3] Norkin M. V., “Cavitation deceleration of a circular cylinder in a liquid after impact”, Journal of Applied Mechanics and Technical Physics, 58:1 (2017), 89–94 | DOI | MR | Zbl

[4] Norkin M. V., “Kavitatsionnoe tormozhenie tverdogo tela v vozmushchennoi zhidkosti”, Nelineinaia dinamika, 13:2 (2017), 181–193 | Zbl

[5] Reinhard M., Korobkin A. A., Cooker M. J., “Cavity formation on the surface of a body entering water with deceleration”, Journal of Engineering Mathematics, 96:1 (2016), 155–174 | DOI | MR | Zbl

[6] Kochin N. E., Kibel I. A., Roze N. V., Teoreticheskaia gidromekhanika, v. 1, Fizmatgiz, M., 1963, 583 pp.

[7] Iudovich V. I., “Odnoznachnaia razreshimost zadachi ob udare s otryvom tverdogo tela o neodnorodnuiu zhidkost”, Vladik. matem. zhurnal, 7:3 (2005), 79–91 | Zbl

[8] Zhukov M. Iu., Shiriaeva E. V., Ispolzovanie paketa konechnykh elementov FreeFem++ dlia zadach gidrodinamiki, elektroforeza i biologii, Izd-vo IuFU, Rostov n/D, 2008, 256 pp.

[9] Dvorak A. V., Teselkin D. A., “Chislennoe issledovanie dvumernykh zadach ob impulsivnom dvizhenii plavaiushchikh tel”, Zhurn. vychisl. matem. i matem. fiziki, 26:1 (1986), 144–150 | Zbl

[10] Rvachev V. L., Protsenko V. S., Kontaktnye zadachi teorii uprugosti dlia neklassicheskikh oblastei, Nauk. dumka, Kiev, 1977, 235 pp.

[11] Vabishchevich P. N., Chislennye metody resheniia zadach so svobodnoi granitsei, Izd-vo Mosk. Univ., M., 1987, 164 pp.

[12] Lions J. L., Controle optimal de systemes gouvernes par des equations derivees partielles, Dunod, Gauthier-Villars, Paris, 1968, 426 pp. | MR | Zbl

[13] Norkin M. V., Smeshannye zadachi gidrodinamicheskogo udara, Izd-vo Tsentra valeologii vuzov Rossii, Rostov n/D, 2007, 136 pp.

[14] Vorovich I. I., Iudovich V. I., “Udar kruglogo diska o zhidkost konechnoi glubiny”, Prikl. matem. i mekhan., 21:4 (1957), 525–532

[15] Ufliand Ia.S., Metod parnykh uravnenii v zadachakh matematicheskoi fiziki, Nauka, L., 1977, 220 pp.