Numerical modeling by grid-characteristic method of influence of ice formations on seismic replies
Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 107-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is numerical simulation of wave propagation in the Arctic with the presence of ice formations — toroses and icebergs. The main goal of the research is studying the influence of the presence of ice formations on horizontal and vertical velocity components on resulting seismograms by carrying out numerical experiments. The work presents the results of numerical modelling of spreading seismic waves for models with toros and for the model with an iceberg, the analysis of influence of ice constructions on the response from the following geological media: sea water, earth, oil layer — is carried out. The seismograms got show the necessity of taking into account ice constructions, as they contribute significantly to resulting seismograms. Besides, the computation of the model with an iceberg, which keel's depth is comparable to the depth of sea water, shows the importance of taking into account the horizontal velocity component while solving the tasks of seismic prospecting in the water medium, where the system, describing only acoustic (longitudinal) waves, is being solved. In this work the analysis of influence of setting the system of source of impulse and receivers on getting seismograms is carried out, but significant improvements in case of deepening of the system of source of impulse and receivers failed to be got. The grid-characteristic method, which provides correctly describing the contact and boundary conditions between linear-elastic and acoustic layers, is used in the research.
Keywords: grid-characteristic method, numerical modeling, Arctic seismic exploration, ice ridges, icebergs.
@article{MM_2018_30_8_a6,
     author = {P. V. Stognii and D. I. Petrov and N. I. Khokhlov and I. B. Petrov},
     title = {Numerical modeling by grid-characteristic method of influence of ice formations on seismic replies},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--115},
     publisher = {mathdoc},
     volume = {30},
     number = {8},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_8_a6/}
}
TY  - JOUR
AU  - P. V. Stognii
AU  - D. I. Petrov
AU  - N. I. Khokhlov
AU  - I. B. Petrov
TI  - Numerical modeling by grid-characteristic method of influence of ice formations on seismic replies
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 107
EP  - 115
VL  - 30
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_8_a6/
LA  - ru
ID  - MM_2018_30_8_a6
ER  - 
%0 Journal Article
%A P. V. Stognii
%A D. I. Petrov
%A N. I. Khokhlov
%A I. B. Petrov
%T Numerical modeling by grid-characteristic method of influence of ice formations on seismic replies
%J Matematičeskoe modelirovanie
%D 2018
%P 107-115
%V 30
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_8_a6/
%G ru
%F MM_2018_30_8_a6
P. V. Stognii; D. I. Petrov; N. I. Khokhlov; I. B. Petrov. Numerical modeling by grid-characteristic method of influence of ice formations on seismic replies. Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 107-115. http://geodesic.mathdoc.fr/item/MM_2018_30_8_a6/

[1] “Doklad ministra prirodnykh resursov i ekologii Rossiiskoi Federatsii S. E. Donskogo”, Nauchno-tekhnicheskie problemy osvoeniia Arktiki, Nauchnaia sessiia Obshchego sobraniia chlenov RAN (16 dek. 2014 g.), 8–13

[2] Iu.N. Novikov, S.V. Gazhula, “Osobennosti otsenki mestorozhdenii uglevodorodnogo syria arkticheskogo shelfa Rossii i ikh pereotsenki v sootvetstvii s novoi klassifikatsiei zapasov”, Neftegazovaia geologiia. Teoriia i praktika, 2008, no. 3, 1–19

[3] E.U. Mironov, S.V. Kliachkin, V.S. Porubaev, “Morfometricheskie kharakteristiki griad torosov i stamukh po dannym naturnykh nabliudenii i modelnykh raschetov v severo-zapadnoi chasti Kaspiiskogo moria”, Trudy 9-i mezhd. konf. RAO'09 (15–18 sent. 2009), v. 1, 280–286

[4] I.B. Petrov, A.V. Favorskaya, A.V. Sannikov, I. E. Kvasov, “Grid-Characteristic Method Using High-Order Interpolation on Tetrahedral Hierarchical Meshes with a Multiple Time Step”, Mathematical Models and Computer Simulations, 5:5 (2013), 409–415 | DOI | Zbl

[5] R. Le Veque, Finite volume methods for hyperbolic problems, Cambridge University Press, 2002 | MR

[6] I.B. Petrov, M.V. Muratov, A.V. Favorskaia, V.A. Biriukov, A.V. Sannikov, “Chislennoe modelirovanie priamykh trekhmernykh zadach seismorazvedki s primeneniem setochno-kharakteristicheskogo metoda na nestrukturirovannykh tetraedralnykh setkakh”, Kompiuternye issledovaniia i modelirovanie, 7:4 (2014), 875–887

[7] V.I. Golubev, I.B. Petrov, N.I. Khokhlov, “Numerical simulation of seismic activity by the grid-characteristic method”, Comp. Math. and Math. Phys., 53:10 (2013), 1523–1533 | DOI | MR | Zbl

[8] A.V. Favorskaia, I.B. Petrov, N.I. Khokhlov, D.I. Petrov, “Chislennoe reshenie arkticheskikh zadach s pomoshchiu setochno-kharakteristicheskogo metoda”, Izvestiia IuFU, Tekhnicheskie nauki, 2014

[9] A.S. Kholodov, Ya.A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Comp. Math. and Math. Physics, 46:9 (2006), 1560–1588 | DOI | MR

[10] R.V. Goldshtein, N.M. Osipenko, “Mekhanika razrusheniia lda i nekotorye ee prilozheniia”, Vestnik Novosib. Gos. Universiteta. Ser. matem., mekh., inform., 12:4 (2012), 41–47

[11] A. Marchenko, K. Eik, “Iceberg towing in open water: Mathematical modeling and analysis of model tests”, Cold Regions Science and Technology, 73 (2012), 12–31 | DOI