Model of rank recognition reflection of the enemy in the tasks of countering
Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 89-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Basic mathematical decision models based on the decision of some tasks of optimization in the assumption of rationality of participants. Actors seek to anticipate the opponent's choice of interaction and choose the best response to it. Within mathematical logic, this task is a task recognition with presence of classifying signs to determine the rank of the reflection of participants during the conflict. In this paper, we consider a mathematical model based on apparatus of mathematical logic for determining the rank of reflection of the enemy in the tasks of countering.
Keywords: mathematical model, mathematical logic, objective recognition, classification task, necessary conditions, reflective analysis, rank of reflection.
Mots-clés : sufficient conditions
@article{MM_2018_30_8_a5,
     author = {V. V. Karjukin and F. S. Chausov},
     title = {Model of rank recognition reflection of the enemy in the tasks of countering},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--106},
     publisher = {mathdoc},
     volume = {30},
     number = {8},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_8_a5/}
}
TY  - JOUR
AU  - V. V. Karjukin
AU  - F. S. Chausov
TI  - Model of rank recognition reflection of the enemy in the tasks of countering
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 89
EP  - 106
VL  - 30
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_8_a5/
LA  - ru
ID  - MM_2018_30_8_a5
ER  - 
%0 Journal Article
%A V. V. Karjukin
%A F. S. Chausov
%T Model of rank recognition reflection of the enemy in the tasks of countering
%J Matematičeskoe modelirovanie
%D 2018
%P 89-106
%V 30
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_8_a5/
%G ru
%F MM_2018_30_8_a5
V. V. Karjukin; F. S. Chausov. Model of rank recognition reflection of the enemy in the tasks of countering. Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 89-106. http://geodesic.mathdoc.fr/item/MM_2018_30_8_a5/

[1] Matematicheskie metody raspoznavaniia obrazov, Doklady 9-i Vserossiiskoi konferentsii, RAN, M., 1999, 271 pp.

[2] A.L. Gorelik, V.A. Skripnik, Metody raspoznovaniia, Uchebnoe posobie, Vysshaia shkola, M., 1977, 303 pp.

[3] F.S. Chausov, Refleksivnyi podkhod v upravlencheskoi deiatelnosti, SPbVMPi, SPb., 2008, 286 pp.

[4] V.A. Lefevr, G.L. Smolian, Algebra konflikta, Znanie, M., 1968, 48 pp.

[5] D.A. Novikov, A.G. Chkhartishvili, Refleksivnyi igry, SINTEG, M., 2003, 203 pp.

[6] T.A. Taran, “Otobrazhenie printsipov refleksivnogo upravleniia v modeliakh refleksivnogo vybora”, Refleksivnye protsessy i upravlenie, 2:1 (2002), 104–118 | Zbl

[7] Iu.B. Germeier, Igry s neprotivopolozhnimi interesami, Nauka, M., 1976, 327 pp.

[8] V.V. Kariukin, F.S. Chausov, “Refleksivnye aspekty matematicheskikh modelei priniatiia reshenii”, Refleksivnye protsessy i upravlenie, 13:1–2, Sb. Mater. IX Mezhdunarodnogo simpoziuma “Refleksivnye protsessy i upravlenie” (2013), 70–73

[9] V.V. Kariukin, F.S. Chausov, “Refleksivnyi analiz bimatrichnykh igr kak reshenie zadachi vybora v modeliach protivodeistviia”, Refleksivnye protsessy i upravlenie, 10:1–2 (2010), 80–92

[10] V.V. Kariukin, F.S. Chausov, “Aksiomaticheskii podkhod k obosnovaniiu algoritma priniatiia resheniia v probleme refleksivnogo vybora”, Refleksivnye protsessy i upravlenie, 15:1–2, Sb. Mater. X Mezhd. simpoziuma (2015), 48–52

[11] G. Gamov, M. Stern, Puzzle Math., Viking Press, N.Y., 1958

[12] V.I. Danilov, Lektsii po teorii igr, Rossiiskaia ekonomich. shkola, M., 2002, 140 pp.