Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_8_a1, author = {Yu. A. Kriksin and V. F. Tishkin}, title = {Hybrid approach to solving single-dimensional gas dynamics equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {17--31}, publisher = {mathdoc}, volume = {30}, number = {8}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_8_a1/} }
Yu. A. Kriksin; V. F. Tishkin. Hybrid approach to solving single-dimensional gas dynamics equations. Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 17-31. http://geodesic.mathdoc.fr/item/MM_2018_30_8_a1/
[1] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, v. 6, 2nd ed., Butterworth-Heinemann, 1987, 552 pp.
[2] S.K. Godunov, A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations, Transl. US Joint Publ. Res. Serv., JPRS 7226, 1969 | Zbl
[3] S.K. Godunov, A.V. Zabrodin, M.Ia. Ivanov, A.N. Kraiko, G.P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp.
[4] A.G. Kulikovsky, N.V. Pogorelov, A.Yu. Semenov, Mathematical aspects of numerical solution of hyperbolic systems, Taylor Francis Inc., 2000 | MR
[5] P.G. Le Floch, J.M. Mercier, C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order”, SIAM J. Numer. Anal., 40:5 (2002), 1968–1992 | DOI | MR
[6] F. Lagoutiere, C.R. Acad, “A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction”, Comp. Rendus Math., 338:7 (2004), 549–554 | DOI | MR | Zbl
[7] X.-H. Cheng, Y.-F. Nie, J.-H. Feng, X.-Y. Luo, L. Cai, “Self-adjusting entropy-stable scheme for compressible Euler equations”, Chinese Physics B, 24:2 (2015) | DOI
[8] H. Zakerzadeh, U.S. Fjordholm, “High-order accurate, fully discrete entropy stable schemes for scalar conservation laws”, IMA J. of Numerical Analysis, 36:2 (2016), 633–654 | DOI | MR
[9] U.S. Fjordholm, R. Kappeli, S. Mishra, E. Tadmor, “Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws”, Found. Comp. Math., 17:3 (2017), 763–827 | DOI | MR | Zbl
[10] T. Chen, Ch.-W. Shu, “Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws”, J. Comp. Phys., 345 (2017), 427–461 | DOI | MR | Zbl
[11] G.A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, J. Comp. Phys., 27:1 (1978), 1–31 | DOI | MR | Zbl
[12] B. Einfeldt, C.D. Munz, P.L. Roe, B. Sjogren, “On Godunov-type methods near low densities”, J. Comp. Phys., 92:2 (1991), 273–295 | DOI | MR | Zbl
[13] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, “Application of averaging to smooth the solution in DG method”, Keldysh Institute preprints, 2017, 089, 32 pp. | Zbl
[14] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, “Impact of Different Limiting Functions on the Order of Solution Obtained by RKDG”, Math. Mod. Comp. Simul., 5:4 (2013), 346–349 | DOI | MR | Zbl
[15] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, D.I. Utiralov, “The no-slip boundary conditions for discontinuous Galerkin method”, Keldysh Institute preprints, 2014, 032, 16 pp.
[16] M.E. Ladonkina, V.F. Tishkin, “Godunov method: a generalization using piecewise polynomial approximations”, Diff. Equations, 51:7 (2015), 895–903 | DOI | DOI | MR | Zbl
[17] M.E. Ladonkina, V.F. Tishkin, “On Godunov type methods of high order of accuracy”, Doklady Mathematics, 91:2 (2015), 189–192 | DOI | DOI | MR | Zbl
[18] V.F. Tishkin, V.T. Zhukov, E.E. Myshetskaya, “Justification of Godunov's scheme in the multidimensional case”, Math. Mod. Comp. Simul., 8:5 (2016), 548–556 | DOI | MR | Zbl
[19] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl
[20] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. on Numer. Anal., 29 (2002), 1749–1779 | DOI | MR