Hybrid approach to solving single-dimensional gas dynamics equations
Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 17-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

To solve one-dimensional gas dynamic problems, the hybrid approach is proposed, in which the entropy equation is solved instead of the energy equation in the isentropic flow domains of an ideal gas. The results of numerical calculations of some model problems obtained by the classical Godunov’s method and the algorithm based on the hybrid approach are compared.
Mots-clés : gasdynamic equations
Keywords: Galerkin discontinuous method, boundary value problem, explicit numerical method, entropy and energy balance.
@article{MM_2018_30_8_a1,
     author = {Yu. A. Kriksin and V. F. Tishkin},
     title = {Hybrid approach to solving single-dimensional gas dynamics equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {17--31},
     publisher = {mathdoc},
     volume = {30},
     number = {8},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_8_a1/}
}
TY  - JOUR
AU  - Yu. A. Kriksin
AU  - V. F. Tishkin
TI  - Hybrid approach to solving single-dimensional gas dynamics equations
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 17
EP  - 31
VL  - 30
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_8_a1/
LA  - ru
ID  - MM_2018_30_8_a1
ER  - 
%0 Journal Article
%A Yu. A. Kriksin
%A V. F. Tishkin
%T Hybrid approach to solving single-dimensional gas dynamics equations
%J Matematičeskoe modelirovanie
%D 2018
%P 17-31
%V 30
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_8_a1/
%G ru
%F MM_2018_30_8_a1
Yu. A. Kriksin; V. F. Tishkin. Hybrid approach to solving single-dimensional gas dynamics equations. Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 17-31. http://geodesic.mathdoc.fr/item/MM_2018_30_8_a1/

[1] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, v. 6, 2nd ed., Butterworth-Heinemann, 1987, 552 pp.

[2] S.K. Godunov, A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations, Transl. US Joint Publ. Res. Serv., JPRS 7226, 1969 | Zbl

[3] S.K. Godunov, A.V. Zabrodin, M.Ia. Ivanov, A.N. Kraiko, G.P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp.

[4] A.G. Kulikovsky, N.V. Pogorelov, A.Yu. Semenov, Mathematical aspects of numerical solution of hyperbolic systems, Taylor Francis Inc., 2000 | MR

[5] P.G. Le Floch, J.M. Mercier, C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order”, SIAM J. Numer. Anal., 40:5 (2002), 1968–1992 | DOI | MR

[6] F. Lagoutiere, C.R. Acad, “A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction”, Comp. Rendus Math., 338:7 (2004), 549–554 | DOI | MR | Zbl

[7] X.-H. Cheng, Y.-F. Nie, J.-H. Feng, X.-Y. Luo, L. Cai, “Self-adjusting entropy-stable scheme for compressible Euler equations”, Chinese Physics B, 24:2 (2015) | DOI

[8] H. Zakerzadeh, U.S. Fjordholm, “High-order accurate, fully discrete entropy stable schemes for scalar conservation laws”, IMA J. of Numerical Analysis, 36:2 (2016), 633–654 | DOI | MR

[9] U.S. Fjordholm, R. Kappeli, S. Mishra, E. Tadmor, “Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws”, Found. Comp. Math., 17:3 (2017), 763–827 | DOI | MR | Zbl

[10] T. Chen, Ch.-W. Shu, “Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws”, J. Comp. Phys., 345 (2017), 427–461 | DOI | MR | Zbl

[11] G.A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, J. Comp. Phys., 27:1 (1978), 1–31 | DOI | MR | Zbl

[12] B. Einfeldt, C.D. Munz, P.L. Roe, B. Sjogren, “On Godunov-type methods near low densities”, J. Comp. Phys., 92:2 (1991), 273–295 | DOI | MR | Zbl

[13] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, “Application of averaging to smooth the solution in DG method”, Keldysh Institute preprints, 2017, 089, 32 pp. | Zbl

[14] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, “Impact of Different Limiting Functions on the Order of Solution Obtained by RKDG”, Math. Mod. Comp. Simul., 5:4 (2013), 346–349 | DOI | MR | Zbl

[15] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, D.I. Utiralov, “The no-slip boundary conditions for discontinuous Galerkin method”, Keldysh Institute preprints, 2014, 032, 16 pp.

[16] M.E. Ladonkina, V.F. Tishkin, “Godunov method: a generalization using piecewise polynomial approximations”, Diff. Equations, 51:7 (2015), 895–903 | DOI | DOI | MR | Zbl

[17] M.E. Ladonkina, V.F. Tishkin, “On Godunov type methods of high order of accuracy”, Doklady Mathematics, 91:2 (2015), 189–192 | DOI | DOI | MR | Zbl

[18] V.F. Tishkin, V.T. Zhukov, E.E. Myshetskaya, “Justification of Godunov's scheme in the multidimensional case”, Math. Mod. Comp. Simul., 8:5 (2016), 548–556 | DOI | MR | Zbl

[19] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl

[20] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. on Numer. Anal., 29 (2002), 1749–1779 | DOI | MR