Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_8_a0, author = {A. V. Danilin and A. V. Solovjev}, title = {Application of the {CABARET} algorithm for modeling turbulent mixing on the example of the {Richtmyer--Meshkov} instability}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--16}, publisher = {mathdoc}, volume = {30}, number = {8}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_8_a0/} }
TY - JOUR AU - A. V. Danilin AU - A. V. Solovjev TI - Application of the CABARET algorithm for modeling turbulent mixing on the example of the Richtmyer--Meshkov instability JO - Matematičeskoe modelirovanie PY - 2018 SP - 3 EP - 16 VL - 30 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_8_a0/ LA - ru ID - MM_2018_30_8_a0 ER -
%0 Journal Article %A A. V. Danilin %A A. V. Solovjev %T Application of the CABARET algorithm for modeling turbulent mixing on the example of the Richtmyer--Meshkov instability %J Matematičeskoe modelirovanie %D 2018 %P 3-16 %V 30 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2018_30_8_a0/ %G ru %F MM_2018_30_8_a0
A. V. Danilin; A. V. Solovjev. Application of the CABARET algorithm for modeling turbulent mixing on the example of the Richtmyer--Meshkov instability. Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2018_30_8_a0/
[1] R.D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids”, Communications on Pure and Applied Mathematics, 13 (1960), 297–319 | DOI | MR
[2] E.E. Meshkov, “Instability of the Interface of Two Gases Accelerated by a Shock Wave”, Soviet Fluid Dynamics, 1969, no. 4, 101–104
[3] K.A. Meyer, P.J. Blewett, “Numerical Investigation of Stability of a Shock-Accelerated Interface between Two Fluids”, Physics of Fluids, 15:3 (1972), 753–759 | DOI
[4] Q. Zhang, S.I. Sohn, “Nonlinear Theory of Unstable Fluid Mixing Driven by Shock Wave”, Physics of Fluids, 9:4 (1997), 1106–1124 | DOI | MR | Zbl
[5] O. Sadot, L. Erez, U. Alon, D. Oren, L.A. Levin, “Study of Nonlinear Evolution of Singlemode and Two-bubble Interaction under Richtmyer-Meshkov Instability”, Physical Review Letters, 80:8 (1998), 1654–1657 | DOI
[6] G.C. Orlicz, S. Balasubramanian, K.P. Prestridge, “Incident shock Mach number effects on Richtmyer-Meshkov mixing in a heavy gas layer”, Physics of Fluids, 25 (2013), 114101 | DOI
[7] B.D. Collins, J.W. Jacobs, “PLIF Flow Visualization and Measurements of the Richtmyer–Meshkov Instability of an air/SF6 Interface”, Journal of Fluid Mechanics, 464 (2002), 113–136 | DOI | Zbl
[8] B.E. Motl, Experimental Parameter Study of the Richtmyer–Meshkov Instability, PhD Thesis, University of Wisconsin, Madison, 2008 | Zbl
[9] E. Leinov, G. Malamud et al., “Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions”, Journal of Fluid Mechanics, 626 (2009), 449–475 | DOI | Zbl
[10] J.-F. Haas, B. Sturtevant, “Interaction of Weak Shock Waves with Cylindrical and Spherical Gas Inhomogeneities”, Journal of Fluid Mechanics, 181 (1987), 41–76 | DOI
[11] D.A. Holder et al., “Shock-Tube Experiments on Richtmyer–Meshkov Instability Growth Using an Enlarged Double Bump Perturbation”, Laser and Particle Beams, 21:3 (2003), 411–418
[12] R. Abgrall, “How to Prevent Pressure Oscillations in Multicomponent Flow Calculations: A Quasi Conservative Approach”, J. of Comp. Physics, 125:1 (1996), 150–160 | DOI | MR | Zbl
[13] M. Latini, O. Schiling, W.S. Don, “High-resolution Simulations and Modeling of Reshocked Single-mode Richtmyer–Meshkov Instability: Comparison to Experimental Data and to Amplitude Growth Model Predictions”, Physics of Fluids, 19:2 (2007), 024104 | DOI | MR | Zbl
[14] M. Latini, O. Schiling, W.S. Don, “Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer–Meshkov instability”, Journal of Computational Physics, 221 (2007), 805–836 | DOI | MR | Zbl
[15] V.F. Tishkin, V.V. Nikishin, I.V. Panov, A.P. Favorskii, “Raznostnye skhemy trekhmernoi gazovoi dinamiki dlia zadach o razvitii neustoichivosti Rikhrmaera–Meshkova”, Mathematicheskoe modelirovanie, 7:5 (1995), 15–25
[16] P. Movahed, E. Johnsen, “Numerical simulations of the Richtmyer-Meshkov instability with reshock”, 20th AIAA Computational Fluid Dynamics Conference (2011, Honolulu)
[17] P. Movahed, E. Johnsen, “A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer–Meshkov instability”, Journal of Computational Physics, 239 (2013), 166–186 | DOI | MR
[18] V.K. Tritschler, X.Y. Hu, S. Hickel, N.A. Adams, “Numerical simulation of a Richtmyer–Meshkov instability with an adaptive central-upwind sixth-order WENO scheme”, Physica Scripta, 155 (2013), 014016 | DOI
[19] S. Ukai, K. Balakrishnan, S. Menon, “Growth rate predictions of single- and multi-mode Richtmyer–Meshkov instability with reshock”, Shock Waves, 21 (2011), 533–546 | DOI
[20] A. Yosef-Hai, O. Sadot et al., “Late-time growth of the Richtmyer–Meshkov instability for different Atwood numbers and different dimensionalities”, Laser and Particle Beams, 21 (2003), 363–368 | DOI
[21] J.T. Moran-Lopez, Multicomponent Reynolds-Averaged Navier-Stokes Modeling of Reshocked Richtmyer-Meshkov Instability-Induced Turbulent Mixing Using the Weighted Essentially Nonoscillatory Method, PhD Thesis, Univ. of Michigan, Ann Arbor, 2013
[22] K.R. Bates, N. Nikiforakis, D. Holder, “Richtmyer–Meshkov Instability Induced by the Interaction of a Shock Wave with a Rectangular Block of SF6”, Physics o Fluids, 19 (2007), 036101 | DOI | Zbl
[23] R.S. Lagumbay, Modeling and Simulation of Multiphase/Multicomponent Flows, PhD Thesis, University of Colorado, Boulder, 2006
[24] V.M. Goloviznin, A.A. Samarskii, “Raznostnaia approksimatsiia konvektivnogo perenosa s prostranstvennym rashchepleniem vremmennoi proizvodnoi”, Matematicheskoe modelirovanie, 10:1 (1998), 86–100
[25] V.M. Goloviznin, A.A. Samarskii, “Nekotorye svoistva raznostnoi skhemy Kabare”, Matematicheskoe modelirovanie, 10:1 (1998), 101–116 | Zbl
[26] V.M. Goloviznin, S.A. Karabasov, “Nelineinaia korrektsiia skhemy Kabare”, Matematicheskoe modelirovanie, 10:12 (1998), 107–123
[27] V.M. Goloviznin, S.A. Karabasov, I.M. Kobrinskii, “Balansno-kharakteristicheskie skhemy s razdelennymi konservativnymi i potokovymi peremennymi”, Matematicheskoe modelirovanie, 15:9 (2003), 29–48 | Zbl
[28] V.M. Goloviznin, “Balansno-kharakteristichskii metod chislennogo resheniia odnomernykh uravnenii gazovoi dinamiki v eilerovykh peremennykh”, Matematicheskoe modelirovanie, 18:11 (2006), 14–30 | Zbl
[29] V.M. Goloviznin, V.N. Semenov, I.A. Korotkin, S.A. Karabasov, “A novel computational method for modelling stochastic advection in heterogeneous media”, Transport in Porous Media, 66:3 (2007), 439–456 | DOI | MR
[30] A.V. Danilin, A.V. Solovjev, “A Modification of the CABARET Scheme for the Computation of Multicomponent Gaseous Flows”, Numerical Methods and Programming, 16 (2015), 18–25
[31] A.V. Danilin, A.V. Solovjev, A.M. Zaitsev, “A modification of the CABARET scheme for numerical simulation of multicomponent gaseous flows in two-dimensional domains”, Numerical Methods and Programming, 16 (2015), 436–445