Problems of simulation of natural and anthropogenous processes in the Arctic zone of the Russian Federation
Matematičeskoe modelirovanie, Tome 30 (2018) no. 7, pp. 103-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The review of works on mathematical modeling of impacts of the natural phenomena on industrial objects in the Arctic zone of the North Sea of the Russian Federation, and also the works concerning the solution of problems of industrial development of the Arctic shelf is submitted. The description of the urgent computing tasks connected with development of the Arctic is provided. The numerical methods which are used for their decision, the problems arising at the same time are discussed calculation result are given. The list of the most urgent computing problems of development of the Arctic shelf of Russia is provided.
Keywords: mathematical modeling, numerical methods, mechanics of continuous environments, researches of the Arctic, high-performance computing systems.
@article{MM_2018_30_7_a7,
     author = {I. B. Petrov},
     title = {Problems of simulation of natural and anthropogenous processes in the {Arctic} zone of the {Russian} {Federation}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--136},
     publisher = {mathdoc},
     volume = {30},
     number = {7},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_7_a7/}
}
TY  - JOUR
AU  - I. B. Petrov
TI  - Problems of simulation of natural and anthropogenous processes in the Arctic zone of the Russian Federation
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 103
EP  - 136
VL  - 30
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_7_a7/
LA  - ru
ID  - MM_2018_30_7_a7
ER  - 
%0 Journal Article
%A I. B. Petrov
%T Problems of simulation of natural and anthropogenous processes in the Arctic zone of the Russian Federation
%J Matematičeskoe modelirovanie
%D 2018
%P 103-136
%V 30
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_7_a7/
%G ru
%F MM_2018_30_7_a7
I. B. Petrov. Problems of simulation of natural and anthropogenous processes in the Arctic zone of the Russian Federation. Matematičeskoe modelirovanie, Tome 30 (2018) no. 7, pp. 103-136. http://geodesic.mathdoc.fr/item/MM_2018_30_7_a7/

[1] N.P. Laverov, V.I. Vasiliev, A.A. Makosko, Nauch. sessiya Obshego sobr. chlenov RAN (16.12.14), Nauka, M., 2015, 420 pp.

[2] U.G. Novikov, S.V. Gagulya, “Osobennosti otcenki mestorogdeniy uglevodorodnogo syriya Arkticheskogo shelfa Rossii i ih pereotcenki v sootvetstvii s novoi klassifikatciei zapasov”, Neftegazovaya geologiya. Teoriya i praktika, 3:1 (2008), 1–19

[3] B.N. Chetverushkin, A.A. Kuleshov, E.B. Savenkov, “Supercomputing challenges in mathematical modeling for petroleum industry”, Oil Gas Field Engineering, 2014, no. 9, 26–35

[4] A.T. Bekker, Veroyatnostnye harakteristiki ledovyh nagruzok na soorugeniya kontinentalnogo shelfa, Dalnauka, Vladivostok, 2005, 345 pp.

[5] J. Weiss, Drift, deformation and fracture of sea ise. A perspective across scales, Springer, 2013, 83 pp.

[6] R.V. Goldshtein, N.M. Osipenko, “Voprosy mehaniki razrusheniya l'da i ledyanogo pokrova pri analize ledyanyh nagruzok”, Sovremennye podhody i perspektivnye tehnologii v proektah osvoeniya neftegazovyh mestorogdeniy rossiiskogo shelfa, Vesti gazovoi nauki, 3(14), Gazprom VNIIGAZ, M., 2013, 104–112 | Zbl

[7] V.E. Borodachev, L'dy Karskogo morya, Gidrometizdat, SPb., 1998, 182 pp.

[8] A. Sannikov, V. Miryaha, I. Petrov, “Numerical simulation of ice strength experiments”, Proceedings of the Third International Scientific Conference “Polar Mechanics” (27–30 September 2016, Vladivostok, Russia), 2016, 141–150

[9] R.V. Goldshtein, N.M. Osipenko, “Treshinostoikost i razrushenie ledyanogo pokrova ledokolami”, Trudy AANII, 391 (1986), 137–156

[10] A. Bolshev, Static and dynamics of anchored floating structures with non-linear characteristics of anchored system, Zhdansk, 1993, 218 pp.

[11] V.A. Kulesh, S.A. Ogay, M.V. Voyloshnikov, “The safety and the effectiveness of ships navigation in ice”, Marine intellectual technologies, 2013, no. 1, 11–20

[12] R.E. Gagnon, “Physical modeling experiments to asses the hydrodynamic interaction between floating glacial ice massesad a transiting tanker”, Journal of Offshore Mechanics and Arctic Engeneering, 126:4 (2005), 297–309 | DOI

[13] Z. Liu, J. Amdahl, S. Loset, “Integreted numerical analysis of an iceberg collisions with a foreship structure”, Marine Structure, 24:4 (2011), 377–395 | DOI

[14] R.E. Gagnon, J. Wang, “Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel”, Cold Regions Science and Technology, 2012, 1–10

[15] I.B. Petrov, “Vozdeistvie l'da i vody na offshornye struktury i pribreznye zony v Arktike”, Nauch.-tehn. problemi osvoeniya Arktiki, Nauka, M., 2015, 230–237

[16] D. Kozlov, “Mathematical model of transverse impact of a solid spherical body on the ice cover surface”, Proceedings of the Third International Scientific Conference “Polar Mechanics” (Vladivostok, Russia, 27–30 September 2016), 115–122

[17] V.P. Glazyrin, M.U. Orlov, “Razrushenie l'da pri udarnom I vzryvnom nagrugenii”, Vychislitelnye tehnologii, 13:1, spetcvypusk (2008), 425–432

[18] A.V. Pogorelova, “Wave resistance of an air-cushion vehicle in unsteady motion over an ice sheet”, Journal of applied mechanics and technical physics, 49:1 (2008), 71–79 | Zbl

[19] A. Korobin, T. Khabakhpaset, A. Papin, “Wave propagation along a channel with ice cover”, European Journal of Mechanics, B/Fluids, 47 (2014), 166–175 | DOI | MR

[20] I. Sturova, L. Tkacheva, “Oscillations of restricted ice cover under local dynamic action”, Proceedings of the Third International Scientific Conference “Polar Mechanics” (27–30 September 2016, Vladivostok, Russia), 2016, 141–150

[21] A.A. Kuleshov, V.V. Mymrin, “Modelirovaniye vibratsiy plavayushchego l'da v priblizhenii tonkoy uprugoy plastiny”, Math. Modelirovanie, 21:6 (2009), 28–40

[22] A.A. Kuleshov, V.V. Mymrin, “Modeling of floating ice vibrations at plane landing to ice airdromes”, Vychislitel'nyye metody i programmirovaniye, 11 (2010), 7–13

[23] J. Paavilainen, J. Tuhkuri, “Pressure distributions and force chains during simulated ice rubbing against Hoped structures”, Cold region Science and Technology, 52 (2013), 157–174 | DOI

[24] A.V. Marchenko, “Model' torosheniya morskih l'dov”, Usp. mehaniki, 2002, no. 3, 67–129

[25] Y. Shinohara, “A redistribution funetion applicable to a dynamic sea ice model”, J. Geophysics. Res., 95 (1999), 13423–13431 | DOI

[26] E. Kenneth, “Iceberg drift modeling and validation of applied metocean hindcast data”, Cold Region Science and Technology, 57 (2009), 67–90 | DOI

[27] V. Pavlov, O. Pavlova, R. Korsnes, “Sea ice fluxes and drift trajectories from potential sources, computed with a statistical sea ice model of the Arctic ocean”, Journal of marine Systems, 48 (2004), 133–157 | DOI

[28] A. Marchenko, “Thermodynamics consolidation and melting of sea ice ridges”, Cold region Science and Technology, 52 (2008), 278–301 | DOI

[29] V.V. Aleshin, V.E. Selesnev, V.V. Kobyakov et al., Numerical analysys of strength of undergrorend pipelines, Editorial URSS, M., 2003, 320 pp.

[30] L. Muravieva, “Problem for safety assessment of subsea pipeline with longi tudinal buckling”, Polar Mechanics, ed. Bekker A. V., 2016, 537–546

[31] M.N. Kaurkin, R.A. Ibraev, K.P. Belyaev, “Usvoenie dannyh nabludeniy v modeli dinamiki okeana vysokogo prostranstvennogo razresheniya s primeneniem metodov parallel'nogo programmirovaniya”, Meteorologiya i Gidrologiya, 2016, no. 7, 47–57

[32] V.M. Volodin and other, Mathematical Modeling of the Earth System, Collective monograph, ed. N.G. Yakovlev, MAKS Press, M., 2016, 328 pp.

[33] K.P. Belyaev, A.A. Kuleshov, N.P. Tuchkova, C.A.S. Tanajura, “A correction method for dynamic model calculations using observational data and its application in Oceanography”, Mathematical Models and Computer Simulations, 8:4 (2016), 391–400 | DOI | MR

[34] K.P. Belyaev, A.A. Kuleshov, N.P. Tuchkova, C.A.S. Tanajura, “An optimal data assimilation method and its application to the numerical simulation of the ocean dynamics”, Math. Comp. Model. of Dynam. Syst., 2017, 1–15 | DOI | MR

[35] K. Belyaev, A. Kuleshov, I. Kirchner, N. Tuchkova, “Numerical experiments with MPI-ESM coupled Atmosphere-Land-Ocean model in conjunction with data assimilations in Arctic Region”, Proc. Int. Conf. of Comp. Methods in Sciences and Eng., ICCMSE-2016, AIP Conference Proceedings, 1790, eds. T.E. Simos et al., 2016, 150005, 4 pp. | DOI

[36] A.A. Samarskii, E.S. Nikolaev, Metody resheniya setochnyh uravneniy, Nauka, Fizmatlit, M., 1978, 560 pp.

[37] G.I. Marchuk, Metody vychislitel'noy matematiki, Lan, St. Petersburg, 2009, 608 pp.

[38] A.N. Konovalov, “Numerical methods for static problems of elasticity”, Siberian Math. J., 36:3 (1995), 491–505 | DOI | MR | Zbl

[39] K.U. Bate, Metody konechnyh elementov, Fizmatlit, M., 2010, 416 pp.

[40] G.I. Marchuk, V.I. Agoshkov, Vvedenie v proektcionno-setochnye metody, Nauka, M., 1981, 416 pp.

[41] A. Taflove, S.C. Hagness, Computation electrodynamics, Artech House, Boston–London, 2005, 1006 pp. | MR

[42] M.I. Epov, V.N. Glinskih, Elektromagnitnyi karotag: modelirovanie i inversiya, Akademicheskoe izdatel'stvo Geo, Novosibirsk, 2005, 98 pp.

[43] M.N. Berdichevskiy, O.N. Gdanova, M.S. Gdanov, Glubinnaya elektrichka v okeane, Nauka, M., 1989, 80 pp.

[44] M.S. Gdanov, Geophizicheskaya elektromagnitnaya teoriya i metody, Nauch. mir, M., 2012, 679 pp.

[45] M.S. Zhdanov, A. Gribenko, E. Wilson, “Generalized joint inversion of multimodel geophysical data using Gramiam constrains. Geophysical Research constraints”, Geophysical Research Letters, 39 (2012), L09301, 7 pp. | DOI

[46] S.Sh. Bimuratov, S.I. Kabanikhin, “The solution of one-dimensional inverse problems of electrodynamics by the Newton-Kantorovich method”, Comp. Math. Math. Phys., 32:12 (1992), 1729–1743 | MR | Zbl

[47] V.P. Romanov, Obratnye zadachi dlya differentcial'nyh uravneniy, NGU, Novosibirsk, 1973, 252 pp.

[48] A.A. Samarskiy, P.N. Vabishevich, Chislennye metody resheniya obratnyh zadach mathematicheskoy phiziki, M., 2009, 480 pp.

[49] S.I. Kabanihin, Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izdatel'stvo, Novosibirsk, 2009, 457 pp.

[50] A.V. Favorskaya, I.B. Petrov, D.I. Petrov, N.I. Khokhlov, “Numerical modeling of wave processes in layered media in the Arctic region”, MM CS, 8:4 (2016), 348–357 | Zbl

[51] D.I. Petrov, I.B. Petrov, A.V. Favorskaya, N.I. Khokhlov, “Numerical solution of seismic exploration problems in the Arctic region by applying the grid-characteristic method”, Computational mathematics and mathematical physics, 56:6 (2016), 1164–1173 | DOI | DOI | MR

[52] A.V. Favorskaya, I.B. Petrov, “Wave Responses from oil reservoirs in the Arctic shelf zone”, Doklady Earth Science, 466:2 (2016), 214–217

[53] P.V. Stognii, D.I. Petrov, N.I. Khokhlov, I.B. Petrov, “Modeling of seismic processes in geoprospecting works in a shelf zone of the Arctic”, Russ.J. of Num. Anal. Math. Mod., 2017 | MR

[54] I.E. Kvasov, I.B. Petrov, “Raschet protsessov v neodnorodnykh prostranstvennykh strukturakh”, Mathematicheskoe modelirovanie, 21:5 (2009), 3–9

[55] O.Ya. Vojnov, V.I. Golubev, M.S. Zhdanov, I.B. Petrov, “Postroenie metoda uprugoj migracii sejsmicheskih dannyh v priblizhenii Bora”, MIPT Transactions, 8:2 (2016), 60–66

[56] O.M. Belotserkovskiy, Chislennoe modelirovanie v mehanike sploshnyh sred, Fizmatlit, M., 1994, 442 pp.

[57] K.M. Magomedov, A.S. Kholodov, Setochno-harakteristicheskie metody, Nauka, M., 1988, 288 pp.

[58] S.K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Krajno, G.P. Prokopov, Chislennoe reshenie mnogomernyh zadach gazovoj dinamiki, Nauka, M., 1976, 400 pp.

[59] R.P. Fedorenko, “Primenenie raznostnyh skhem vysokoj tochnosti dlya chislennogo resheniya giperbolicheskih uravnenij”, ZVM i MF, 2:6 (1962), 1172–1188

[60] V.P. Kolgan, “Primenenie principa minimal'nyh znachenij proizvodnoj k postroeniyu konechno-raznostnyh skhem dlya rascheta razryvnyh reshenij gazovoj dinamiki”, Uchenyj zapiski CAGI, 3:6 (1972), 68–77

[61] A.J. Harten, “High resolution schemes fog hyperbolic conservation law”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[62] I.B. Petrov, A.S. Holodov, “O regulyarizacii razryvnyh chislennyh reshenij uravnenij giperbolicheskogo tipa”, ZVM i MF, 24:8 (1984), 1172–1188 | Zbl

[63] I.B. Petrov, A.S. Holodov, “Chislennoe issledovanie nekotoryh dinamicheskih zadach mekhaniki deformiruemogo tverdogo tela setochno-harakteristicheskim metodom”, ZVM i MF, 24 (1984), 722–739 | Zbl

[64] A.G. Kulikovskij, N.V. Pogorelov, A.Yu. Semenov, Matematicheskie voprosy resheniya giperbolicheskih sistem uravnenij, Fizmatlit, M., 2001, 608 pp.

[65] B.N. Chetverushkin, N.G. Churbanova, A.A. Kuleshov, A.A. Lyupa, M.A. Trapeznikova, “Application of kinetic approach to porous medium flows simulation in environmental hydrology problems on high-performance computing systems”, Russ. J. Numer. Anal. Math. Model., 31:4 (2016), 187–196 | DOI | MR | Zbl

[66] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Dordrecht–Heidelberg–London–New York, 2009, 721 pp. | MR | Zbl

[67] V.V. Rusanov, “Raznostnye skhemy tret'ego poryadka tochnosti dlya skvoznogo scheta razryvnyh reshenij”, DAN SSSR, 180:6 (1968), 1303–1305 | Zbl

[68] S.Z. Burstein, A. Mirin, “Third order difference method for hyperbolic equations”, J. Comp. Phys., 5:3 (1968), 547–557 | DOI | MR

[69] A.A. Tusheva, Yu.N. Shokin, N.N. Yanenko, “O postroenii raznostnyh skhem povyshennogo poryadka approksimacii na osnove differencial'nyh sledstvij”, Nekotorye problemy vychislitel'noj i prikladnoj matematiki, Nauka, Novosibirsk, 1975, 184–191

[70] A.S. Kholodov, “O postroenii raznostnyh skhem povyshennogo poryadka tochnosti dlya uravnenij giperbolicheskogo tipa”, ZVM i MF, 20:26 (1980), 1601–1620 | Zbl

[71] C.-W. Shu, S. Osher, “Efficient Imlementation of Essentially Non oscillatory Schemes Shock-Capturing Schemes”, J. Comp. Phys., 83 (1989), 32–78 | DOI | MR | Zbl

[72] A.S. Kholodov, Ya.A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Comp. Math. and Math. Phys., 46:9 (2006), 1560–1588 | DOI | MR

[73] M.N. Mikhailovskaya, B.V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comp. Math. Math. Physics, 52:4 (2012), 578–600 | DOI | MR | Zbl

[74] V.I. Golubev, I.B. Petrov, N.I. Khokhlov, “Compact grid-characteristic schemes of higher orders for 3D linear transport equation”, Math. Mod. Comp. Sim., 8:5 (2016), 577–584 | MR

[75] A.V. Favorskaya, I.B. Petrov, A.V. Sannikov, I.E. Kvasov, “Grid-characteristic method using high order interpolation on tetrahedral hierarchical meshes with a multiple time step”, Mathematical Models and Computer Simulations, 25:2 (2013), 409–415

[76] V.B. Leviant, I.E. Kvasov, I.B. Petrov, “Assessment of possibility of detecting and mapping formational mesofractures using scattered converted waves”, Seismic Technologies, 2016, no. 1, 14–30

[77] I.B. Petrov, N.I. Khokhlov, “Modeling 3D seismic problems using high-performance computer systems”, Math. Models Comp. Simulation, 6:4 (2014), 342–350 | DOI | MR

[78] M. Kaser, M. Dumbser, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes. The two-dimentional isotropic case with external source terms”, Geophysics Journal Internal, 166:2 (2006), 855–877 | DOI

[79] V.A. Miryaha, A.V. Sannikov, I.B. Petrov, “Discontinuous Galerkin method for numerical simulation of dynamic processes in solids”, Math. Mod. Comp. Simul., 7:5 (2015), 446–455 | DOI | MR

[80] A.I. Tolstyh, Kompaktnye i mul'tioperatornye approksimacii vysokoj tochnosti dlya uravnenij v chastnyh proizvodnyh, Nauka, M., 2015, 350 pp.

[81] I.S. Menshov, “Povyshenie poryadka approximatsii shemi Godunova na osnove obobschennoi zadachi Reamana”, ZVM i MF, 30:9 (1990), 1357–1371

[82] M.E. Ladonkina, V.F. Tishkin, “Godunov method: a generalization using piecewise polynomial approximations”, Differential Equations, 51:7 (2015), 895–903 | DOI | DOI | MR | Zbl

[83] M.E. Ladonkina, V.F. Tishkin, “On Godunov-type methods of high order of accuracy”, Doklady Mathematics, 91:2 (2015), 189–192 | DOI | DOI | MR | Zbl

[84] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, “Application of the RKDG method for gas dynamics problems”, Math. Models Comp. Simulations, 6:4 (2014), 397–407 | DOI | MR

[85] B.N. Chetverushkin, “Prikladnaya matematika i problemy ispol'zovaniya vysokoproizvoditel'nyh vychislitel'nyh system”, MIPT Transactions, 3:4 (2011), 55–67

[86] G.E. Norman, N.D. Orekhov, V.V. Pisarev et al., “Zachem i kakie superkomp'yutery ehkzaflopsnogo klassa nuzhny v estestvennyh naukah”, Programmnye sistemi: teoriya i prilozheniya, 6:4 (2015), 243–311

[87] N.I. Khohlov, I.B. Petrov, “Primenenie sovremennyh vysokoproizvoditel'nyh tekhnologij dlya zadach sejsmiki i geofiziki”, Vychisl. tekhnologii v estestvennyh naukah, v. 3, eds. Nazirov N. N., Shur L. N., IKI RAN, M., 2015, 173–185

[88] V.A. Biryukov, V.A. Miryakha, I.B. Petrov, “Analysis of the Dependence of the global load dependence on ice properties for the interaction between an ice field and a structure by a numerical simulation”, Doklady, 474:6 (2017), 327–330

[89] D.P. Grigorevykh, N.I. Khokhlov, I.B. Petrov, “Raschet dinamicheskogo razrusheniia v tverdykh deformiruemykh telakh”, Matem. modelirovanie, 29:4 (2017), 45–58

[90] D.N. Voroshchuk, V.A. Miryaha, I.B. Petrov, “Issledovanie 3D-sejsmicheskogo otklika ot vertikal'nogo geologicheskogo razloma razryvnym metodom Galerkina”, Trudy MFTI, MIPT Transactions, 2016, 54–64

[91] A.V. Favorskaya, I. Petrov, N. Khokhlov, “Numerical modeling of wave processes during seismic exploration”, Science Direct Proc. Computer science, 96 (2016), 920–929 | DOI

[92] A.V. Favorskaia, I.B. Petrov, N.I. Khokhlov, “Chislennoe modelirovanie setochno-kharakteristicheskim metodom vozdeistvie zemletriasenii na sooruzheniia”, Matemat. model., 27:12 (2015), 109–120

[93] S.A. Ogorodov, A.S. Shestov, V.V. Arhipov et al., “Sovremennyj ledovo-ehkzaracionnyj rel'ef na shel'fe Zapadnogo YAmala: naturnye issledovaniya i modelirovanie”, Vestnik NGU. Ser. matem., mekh., inform., 13:3 (2013), 77–89

[94] A.A. Kuleshov, “Difference approximation of the problem of bending vibrations of a thin elastic plates”, Comp. Math. and Mathematical Physics, 45:1 (2005), 694–715 | MR | Zbl

[95] A.A. Kuleshov, V.V. Mymrin, A.V. Razgulin, “Strong convergence of difference approximations in the problem of transverse vibrations of thin elastic plates”, Computational Mathematics and Mathematical Physics, 49:1 (2009), 146–171 | DOI | MR | Zbl

[96] A.A. Kuleshov, “Reduction method with finite-difference approximation for the model of small transverse vibrations in thin elastic plates and some applications”, Computers and Simulation in Modern Science, v. 4, WSEAS Press, 2010, 101–110

[97] F. Milinazzo, M. Shinbrot, N.W. Evans, “A mathematical analysis of the steady response of floating ice to the uniform motion of a rectangular load”, J. Fluid Mech., 287 (1995), 173–197 | DOI | MR | Zbl

[98] P. Wetzel, H. Haak, J. Jungclaus, E. Maier-Reimer, The Max-Planck-Institute Global Ocean/Sea-Ice Model MPI-OM, Technical report, http://www.mpimet.mpg.de/fileadmin/models/MPIOM/

[99] V.P. Dymnikov, V.N. Lykosov, E.M. Volodin, “Modelirovanie klimata i ego izmenenii”, Vestnik Rossiiskoi Academii Nauk, 82:3 (2012), 227–236

[100] K.D. Nikitin, M.A. Olshanskii, K.M. Terekhov, Yu.V. Vassilevski, R.M. Yanbarisov, “An adaptive numerical method for free surface flows passing rigidly mounted obstacles”, Computers and Fluids, 148 (2017), 56–68 | DOI | MR | Zbl

[101] V.A. Gasilov, I.V. Gasilova, L.V. Klochkova, Y.A. Poveshchenko, V.F. Tishkin, “Difference schemes based on the support operator method for fluids dynamics problems in a collector containing gas hydrates”, Comp. Math. and Math. Phys., 55 (2015), 1310–1323 | DOI | MR | Zbl

[102] R.V. Zhalnin, M.E. Ladonkina, V.F. Masyagin, V.F. Tishkin, “Application of the discontinuous Galerkin method for solving parabolic problems in anisotropic media on triangular meshes”, Bulletin of the south Ural state university. Series: Math. Modeling Programming Comp. Software, 9:3 (2016), 144–151 | Zbl

[103] V.A. Balashov, E.B. Savenkov, “Numerical study of a quasi-hydrodynamic system of equations for flow computation at small Mach numbers”, Comp. Math. Math. Phys., 55:10 (2015), 1743–1751 | DOI | MR | Zbl

[104] V.A. Balashov, E.B. Savenkov, A.A. Kuleshov, “Direct numerical simulation of a fluid flow in core samples based on quasi-hydrodynamic equations”, ICCMSE-2016, AIP Conf. Proc., 1790, eds. T.E. Simos et al., 2016, 150006, 4 pp. | DOI

[105] V.A. Balashov, E.B. Savenkov, “Direct pore-scale flow simulation using quasi-hydrodynamic equations”, Doklady Physics, 61:4 (2016), 192–194 | DOI