Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_7_a7, author = {I. B. Petrov}, title = {Problems of simulation of natural and anthropogenous processes in the {Arctic} zone of the {Russian} {Federation}}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {103--136}, publisher = {mathdoc}, volume = {30}, number = {7}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_7_a7/} }
TY - JOUR AU - I. B. Petrov TI - Problems of simulation of natural and anthropogenous processes in the Arctic zone of the Russian Federation JO - Matematičeskoe modelirovanie PY - 2018 SP - 103 EP - 136 VL - 30 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_7_a7/ LA - ru ID - MM_2018_30_7_a7 ER -
I. B. Petrov. Problems of simulation of natural and anthropogenous processes in the Arctic zone of the Russian Federation. Matematičeskoe modelirovanie, Tome 30 (2018) no. 7, pp. 103-136. http://geodesic.mathdoc.fr/item/MM_2018_30_7_a7/
[1] N.P. Laverov, V.I. Vasiliev, A.A. Makosko, Nauch. sessiya Obshego sobr. chlenov RAN (16.12.14), Nauka, M., 2015, 420 pp.
[2] U.G. Novikov, S.V. Gagulya, “Osobennosti otcenki mestorogdeniy uglevodorodnogo syriya Arkticheskogo shelfa Rossii i ih pereotcenki v sootvetstvii s novoi klassifikatciei zapasov”, Neftegazovaya geologiya. Teoriya i praktika, 3:1 (2008), 1–19
[3] B.N. Chetverushkin, A.A. Kuleshov, E.B. Savenkov, “Supercomputing challenges in mathematical modeling for petroleum industry”, Oil Gas Field Engineering, 2014, no. 9, 26–35
[4] A.T. Bekker, Veroyatnostnye harakteristiki ledovyh nagruzok na soorugeniya kontinentalnogo shelfa, Dalnauka, Vladivostok, 2005, 345 pp.
[5] J. Weiss, Drift, deformation and fracture of sea ise. A perspective across scales, Springer, 2013, 83 pp.
[6] R.V. Goldshtein, N.M. Osipenko, “Voprosy mehaniki razrusheniya l'da i ledyanogo pokrova pri analize ledyanyh nagruzok”, Sovremennye podhody i perspektivnye tehnologii v proektah osvoeniya neftegazovyh mestorogdeniy rossiiskogo shelfa, Vesti gazovoi nauki, 3(14), Gazprom VNIIGAZ, M., 2013, 104–112 | Zbl
[7] V.E. Borodachev, L'dy Karskogo morya, Gidrometizdat, SPb., 1998, 182 pp.
[8] A. Sannikov, V. Miryaha, I. Petrov, “Numerical simulation of ice strength experiments”, Proceedings of the Third International Scientific Conference “Polar Mechanics” (27–30 September 2016, Vladivostok, Russia), 2016, 141–150
[9] R.V. Goldshtein, N.M. Osipenko, “Treshinostoikost i razrushenie ledyanogo pokrova ledokolami”, Trudy AANII, 391 (1986), 137–156
[10] A. Bolshev, Static and dynamics of anchored floating structures with non-linear characteristics of anchored system, Zhdansk, 1993, 218 pp.
[11] V.A. Kulesh, S.A. Ogay, M.V. Voyloshnikov, “The safety and the effectiveness of ships navigation in ice”, Marine intellectual technologies, 2013, no. 1, 11–20
[12] R.E. Gagnon, “Physical modeling experiments to asses the hydrodynamic interaction between floating glacial ice massesad a transiting tanker”, Journal of Offshore Mechanics and Arctic Engeneering, 126:4 (2005), 297–309 | DOI
[13] Z. Liu, J. Amdahl, S. Loset, “Integreted numerical analysis of an iceberg collisions with a foreship structure”, Marine Structure, 24:4 (2011), 377–395 | DOI
[14] R.E. Gagnon, J. Wang, “Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel”, Cold Regions Science and Technology, 2012, 1–10
[15] I.B. Petrov, “Vozdeistvie l'da i vody na offshornye struktury i pribreznye zony v Arktike”, Nauch.-tehn. problemi osvoeniya Arktiki, Nauka, M., 2015, 230–237
[16] D. Kozlov, “Mathematical model of transverse impact of a solid spherical body on the ice cover surface”, Proceedings of the Third International Scientific Conference “Polar Mechanics” (Vladivostok, Russia, 27–30 September 2016), 115–122
[17] V.P. Glazyrin, M.U. Orlov, “Razrushenie l'da pri udarnom I vzryvnom nagrugenii”, Vychislitelnye tehnologii, 13:1, spetcvypusk (2008), 425–432
[18] A.V. Pogorelova, “Wave resistance of an air-cushion vehicle in unsteady motion over an ice sheet”, Journal of applied mechanics and technical physics, 49:1 (2008), 71–79 | Zbl
[19] A. Korobin, T. Khabakhpaset, A. Papin, “Wave propagation along a channel with ice cover”, European Journal of Mechanics, B/Fluids, 47 (2014), 166–175 | DOI | MR
[20] I. Sturova, L. Tkacheva, “Oscillations of restricted ice cover under local dynamic action”, Proceedings of the Third International Scientific Conference “Polar Mechanics” (27–30 September 2016, Vladivostok, Russia), 2016, 141–150
[21] A.A. Kuleshov, V.V. Mymrin, “Modelirovaniye vibratsiy plavayushchego l'da v priblizhenii tonkoy uprugoy plastiny”, Math. Modelirovanie, 21:6 (2009), 28–40
[22] A.A. Kuleshov, V.V. Mymrin, “Modeling of floating ice vibrations at plane landing to ice airdromes”, Vychislitel'nyye metody i programmirovaniye, 11 (2010), 7–13
[23] J. Paavilainen, J. Tuhkuri, “Pressure distributions and force chains during simulated ice rubbing against Hoped structures”, Cold region Science and Technology, 52 (2013), 157–174 | DOI
[24] A.V. Marchenko, “Model' torosheniya morskih l'dov”, Usp. mehaniki, 2002, no. 3, 67–129
[25] Y. Shinohara, “A redistribution funetion applicable to a dynamic sea ice model”, J. Geophysics. Res., 95 (1999), 13423–13431 | DOI
[26] E. Kenneth, “Iceberg drift modeling and validation of applied metocean hindcast data”, Cold Region Science and Technology, 57 (2009), 67–90 | DOI
[27] V. Pavlov, O. Pavlova, R. Korsnes, “Sea ice fluxes and drift trajectories from potential sources, computed with a statistical sea ice model of the Arctic ocean”, Journal of marine Systems, 48 (2004), 133–157 | DOI
[28] A. Marchenko, “Thermodynamics consolidation and melting of sea ice ridges”, Cold region Science and Technology, 52 (2008), 278–301 | DOI
[29] V.V. Aleshin, V.E. Selesnev, V.V. Kobyakov et al., Numerical analysys of strength of undergrorend pipelines, Editorial URSS, M., 2003, 320 pp.
[30] L. Muravieva, “Problem for safety assessment of subsea pipeline with longi tudinal buckling”, Polar Mechanics, ed. Bekker A. V., 2016, 537–546
[31] M.N. Kaurkin, R.A. Ibraev, K.P. Belyaev, “Usvoenie dannyh nabludeniy v modeli dinamiki okeana vysokogo prostranstvennogo razresheniya s primeneniem metodov parallel'nogo programmirovaniya”, Meteorologiya i Gidrologiya, 2016, no. 7, 47–57
[32] V.M. Volodin and other, Mathematical Modeling of the Earth System, Collective monograph, ed. N.G. Yakovlev, MAKS Press, M., 2016, 328 pp.
[33] K.P. Belyaev, A.A. Kuleshov, N.P. Tuchkova, C.A.S. Tanajura, “A correction method for dynamic model calculations using observational data and its application in Oceanography”, Mathematical Models and Computer Simulations, 8:4 (2016), 391–400 | DOI | MR
[34] K.P. Belyaev, A.A. Kuleshov, N.P. Tuchkova, C.A.S. Tanajura, “An optimal data assimilation method and its application to the numerical simulation of the ocean dynamics”, Math. Comp. Model. of Dynam. Syst., 2017, 1–15 | DOI | MR
[35] K. Belyaev, A. Kuleshov, I. Kirchner, N. Tuchkova, “Numerical experiments with MPI-ESM coupled Atmosphere-Land-Ocean model in conjunction with data assimilations in Arctic Region”, Proc. Int. Conf. of Comp. Methods in Sciences and Eng., ICCMSE-2016, AIP Conference Proceedings, 1790, eds. T.E. Simos et al., 2016, 150005, 4 pp. | DOI
[36] A.A. Samarskii, E.S. Nikolaev, Metody resheniya setochnyh uravneniy, Nauka, Fizmatlit, M., 1978, 560 pp.
[37] G.I. Marchuk, Metody vychislitel'noy matematiki, Lan, St. Petersburg, 2009, 608 pp.
[38] A.N. Konovalov, “Numerical methods for static problems of elasticity”, Siberian Math. J., 36:3 (1995), 491–505 | DOI | MR | Zbl
[39] K.U. Bate, Metody konechnyh elementov, Fizmatlit, M., 2010, 416 pp.
[40] G.I. Marchuk, V.I. Agoshkov, Vvedenie v proektcionno-setochnye metody, Nauka, M., 1981, 416 pp.
[41] A. Taflove, S.C. Hagness, Computation electrodynamics, Artech House, Boston–London, 2005, 1006 pp. | MR
[42] M.I. Epov, V.N. Glinskih, Elektromagnitnyi karotag: modelirovanie i inversiya, Akademicheskoe izdatel'stvo Geo, Novosibirsk, 2005, 98 pp.
[43] M.N. Berdichevskiy, O.N. Gdanova, M.S. Gdanov, Glubinnaya elektrichka v okeane, Nauka, M., 1989, 80 pp.
[44] M.S. Gdanov, Geophizicheskaya elektromagnitnaya teoriya i metody, Nauch. mir, M., 2012, 679 pp.
[45] M.S. Zhdanov, A. Gribenko, E. Wilson, “Generalized joint inversion of multimodel geophysical data using Gramiam constrains. Geophysical Research constraints”, Geophysical Research Letters, 39 (2012), L09301, 7 pp. | DOI
[46] S.Sh. Bimuratov, S.I. Kabanikhin, “The solution of one-dimensional inverse problems of electrodynamics by the Newton-Kantorovich method”, Comp. Math. Math. Phys., 32:12 (1992), 1729–1743 | MR | Zbl
[47] V.P. Romanov, Obratnye zadachi dlya differentcial'nyh uravneniy, NGU, Novosibirsk, 1973, 252 pp.
[48] A.A. Samarskiy, P.N. Vabishevich, Chislennye metody resheniya obratnyh zadach mathematicheskoy phiziki, M., 2009, 480 pp.
[49] S.I. Kabanihin, Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izdatel'stvo, Novosibirsk, 2009, 457 pp.
[50] A.V. Favorskaya, I.B. Petrov, D.I. Petrov, N.I. Khokhlov, “Numerical modeling of wave processes in layered media in the Arctic region”, MM CS, 8:4 (2016), 348–357 | Zbl
[51] D.I. Petrov, I.B. Petrov, A.V. Favorskaya, N.I. Khokhlov, “Numerical solution of seismic exploration problems in the Arctic region by applying the grid-characteristic method”, Computational mathematics and mathematical physics, 56:6 (2016), 1164–1173 | DOI | DOI | MR
[52] A.V. Favorskaya, I.B. Petrov, “Wave Responses from oil reservoirs in the Arctic shelf zone”, Doklady Earth Science, 466:2 (2016), 214–217
[53] P.V. Stognii, D.I. Petrov, N.I. Khokhlov, I.B. Petrov, “Modeling of seismic processes in geoprospecting works in a shelf zone of the Arctic”, Russ.J. of Num. Anal. Math. Mod., 2017 | MR
[54] I.E. Kvasov, I.B. Petrov, “Raschet protsessov v neodnorodnykh prostranstvennykh strukturakh”, Mathematicheskoe modelirovanie, 21:5 (2009), 3–9
[55] O.Ya. Vojnov, V.I. Golubev, M.S. Zhdanov, I.B. Petrov, “Postroenie metoda uprugoj migracii sejsmicheskih dannyh v priblizhenii Bora”, MIPT Transactions, 8:2 (2016), 60–66
[56] O.M. Belotserkovskiy, Chislennoe modelirovanie v mehanike sploshnyh sred, Fizmatlit, M., 1994, 442 pp.
[57] K.M. Magomedov, A.S. Kholodov, Setochno-harakteristicheskie metody, Nauka, M., 1988, 288 pp.
[58] S.K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Krajno, G.P. Prokopov, Chislennoe reshenie mnogomernyh zadach gazovoj dinamiki, Nauka, M., 1976, 400 pp.
[59] R.P. Fedorenko, “Primenenie raznostnyh skhem vysokoj tochnosti dlya chislennogo resheniya giperbolicheskih uravnenij”, ZVM i MF, 2:6 (1962), 1172–1188
[60] V.P. Kolgan, “Primenenie principa minimal'nyh znachenij proizvodnoj k postroeniyu konechno-raznostnyh skhem dlya rascheta razryvnyh reshenij gazovoj dinamiki”, Uchenyj zapiski CAGI, 3:6 (1972), 68–77
[61] A.J. Harten, “High resolution schemes fog hyperbolic conservation law”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[62] I.B. Petrov, A.S. Holodov, “O regulyarizacii razryvnyh chislennyh reshenij uravnenij giperbolicheskogo tipa”, ZVM i MF, 24:8 (1984), 1172–1188 | Zbl
[63] I.B. Petrov, A.S. Holodov, “Chislennoe issledovanie nekotoryh dinamicheskih zadach mekhaniki deformiruemogo tverdogo tela setochno-harakteristicheskim metodom”, ZVM i MF, 24 (1984), 722–739 | Zbl
[64] A.G. Kulikovskij, N.V. Pogorelov, A.Yu. Semenov, Matematicheskie voprosy resheniya giperbolicheskih sistem uravnenij, Fizmatlit, M., 2001, 608 pp.
[65] B.N. Chetverushkin, N.G. Churbanova, A.A. Kuleshov, A.A. Lyupa, M.A. Trapeznikova, “Application of kinetic approach to porous medium flows simulation in environmental hydrology problems on high-performance computing systems”, Russ. J. Numer. Anal. Math. Model., 31:4 (2016), 187–196 | DOI | MR | Zbl
[66] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Dordrecht–Heidelberg–London–New York, 2009, 721 pp. | MR | Zbl
[67] V.V. Rusanov, “Raznostnye skhemy tret'ego poryadka tochnosti dlya skvoznogo scheta razryvnyh reshenij”, DAN SSSR, 180:6 (1968), 1303–1305 | Zbl
[68] S.Z. Burstein, A. Mirin, “Third order difference method for hyperbolic equations”, J. Comp. Phys., 5:3 (1968), 547–557 | DOI | MR
[69] A.A. Tusheva, Yu.N. Shokin, N.N. Yanenko, “O postroenii raznostnyh skhem povyshennogo poryadka approksimacii na osnove differencial'nyh sledstvij”, Nekotorye problemy vychislitel'noj i prikladnoj matematiki, Nauka, Novosibirsk, 1975, 184–191
[70] A.S. Kholodov, “O postroenii raznostnyh skhem povyshennogo poryadka tochnosti dlya uravnenij giperbolicheskogo tipa”, ZVM i MF, 20:26 (1980), 1601–1620 | Zbl
[71] C.-W. Shu, S. Osher, “Efficient Imlementation of Essentially Non oscillatory Schemes Shock-Capturing Schemes”, J. Comp. Phys., 83 (1989), 32–78 | DOI | MR | Zbl
[72] A.S. Kholodov, Ya.A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Comp. Math. and Math. Phys., 46:9 (2006), 1560–1588 | DOI | MR
[73] M.N. Mikhailovskaya, B.V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comp. Math. Math. Physics, 52:4 (2012), 578–600 | DOI | MR | Zbl
[74] V.I. Golubev, I.B. Petrov, N.I. Khokhlov, “Compact grid-characteristic schemes of higher orders for 3D linear transport equation”, Math. Mod. Comp. Sim., 8:5 (2016), 577–584 | MR
[75] A.V. Favorskaya, I.B. Petrov, A.V. Sannikov, I.E. Kvasov, “Grid-characteristic method using high order interpolation on tetrahedral hierarchical meshes with a multiple time step”, Mathematical Models and Computer Simulations, 25:2 (2013), 409–415
[76] V.B. Leviant, I.E. Kvasov, I.B. Petrov, “Assessment of possibility of detecting and mapping formational mesofractures using scattered converted waves”, Seismic Technologies, 2016, no. 1, 14–30
[77] I.B. Petrov, N.I. Khokhlov, “Modeling 3D seismic problems using high-performance computer systems”, Math. Models Comp. Simulation, 6:4 (2014), 342–350 | DOI | MR
[78] M. Kaser, M. Dumbser, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes. The two-dimentional isotropic case with external source terms”, Geophysics Journal Internal, 166:2 (2006), 855–877 | DOI
[79] V.A. Miryaha, A.V. Sannikov, I.B. Petrov, “Discontinuous Galerkin method for numerical simulation of dynamic processes in solids”, Math. Mod. Comp. Simul., 7:5 (2015), 446–455 | DOI | MR
[80] A.I. Tolstyh, Kompaktnye i mul'tioperatornye approksimacii vysokoj tochnosti dlya uravnenij v chastnyh proizvodnyh, Nauka, M., 2015, 350 pp.
[81] I.S. Menshov, “Povyshenie poryadka approximatsii shemi Godunova na osnove obobschennoi zadachi Reamana”, ZVM i MF, 30:9 (1990), 1357–1371
[82] M.E. Ladonkina, V.F. Tishkin, “Godunov method: a generalization using piecewise polynomial approximations”, Differential Equations, 51:7 (2015), 895–903 | DOI | DOI | MR | Zbl
[83] M.E. Ladonkina, V.F. Tishkin, “On Godunov-type methods of high order of accuracy”, Doklady Mathematics, 91:2 (2015), 189–192 | DOI | DOI | MR | Zbl
[84] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, “Application of the RKDG method for gas dynamics problems”, Math. Models Comp. Simulations, 6:4 (2014), 397–407 | DOI | MR
[85] B.N. Chetverushkin, “Prikladnaya matematika i problemy ispol'zovaniya vysokoproizvoditel'nyh vychislitel'nyh system”, MIPT Transactions, 3:4 (2011), 55–67
[86] G.E. Norman, N.D. Orekhov, V.V. Pisarev et al., “Zachem i kakie superkomp'yutery ehkzaflopsnogo klassa nuzhny v estestvennyh naukah”, Programmnye sistemi: teoriya i prilozheniya, 6:4 (2015), 243–311
[87] N.I. Khohlov, I.B. Petrov, “Primenenie sovremennyh vysokoproizvoditel'nyh tekhnologij dlya zadach sejsmiki i geofiziki”, Vychisl. tekhnologii v estestvennyh naukah, v. 3, eds. Nazirov N. N., Shur L. N., IKI RAN, M., 2015, 173–185
[88] V.A. Biryukov, V.A. Miryakha, I.B. Petrov, “Analysis of the Dependence of the global load dependence on ice properties for the interaction between an ice field and a structure by a numerical simulation”, Doklady, 474:6 (2017), 327–330
[89] D.P. Grigorevykh, N.I. Khokhlov, I.B. Petrov, “Raschet dinamicheskogo razrusheniia v tverdykh deformiruemykh telakh”, Matem. modelirovanie, 29:4 (2017), 45–58
[90] D.N. Voroshchuk, V.A. Miryaha, I.B. Petrov, “Issledovanie 3D-sejsmicheskogo otklika ot vertikal'nogo geologicheskogo razloma razryvnym metodom Galerkina”, Trudy MFTI, MIPT Transactions, 2016, 54–64
[91] A.V. Favorskaya, I. Petrov, N. Khokhlov, “Numerical modeling of wave processes during seismic exploration”, Science Direct Proc. Computer science, 96 (2016), 920–929 | DOI
[92] A.V. Favorskaia, I.B. Petrov, N.I. Khokhlov, “Chislennoe modelirovanie setochno-kharakteristicheskim metodom vozdeistvie zemletriasenii na sooruzheniia”, Matemat. model., 27:12 (2015), 109–120
[93] S.A. Ogorodov, A.S. Shestov, V.V. Arhipov et al., “Sovremennyj ledovo-ehkzaracionnyj rel'ef na shel'fe Zapadnogo YAmala: naturnye issledovaniya i modelirovanie”, Vestnik NGU. Ser. matem., mekh., inform., 13:3 (2013), 77–89
[94] A.A. Kuleshov, “Difference approximation of the problem of bending vibrations of a thin elastic plates”, Comp. Math. and Mathematical Physics, 45:1 (2005), 694–715 | MR | Zbl
[95] A.A. Kuleshov, V.V. Mymrin, A.V. Razgulin, “Strong convergence of difference approximations in the problem of transverse vibrations of thin elastic plates”, Computational Mathematics and Mathematical Physics, 49:1 (2009), 146–171 | DOI | MR | Zbl
[96] A.A. Kuleshov, “Reduction method with finite-difference approximation for the model of small transverse vibrations in thin elastic plates and some applications”, Computers and Simulation in Modern Science, v. 4, WSEAS Press, 2010, 101–110
[97] F. Milinazzo, M. Shinbrot, N.W. Evans, “A mathematical analysis of the steady response of floating ice to the uniform motion of a rectangular load”, J. Fluid Mech., 287 (1995), 173–197 | DOI | MR | Zbl
[98] P. Wetzel, H. Haak, J. Jungclaus, E. Maier-Reimer, The Max-Planck-Institute Global Ocean/Sea-Ice Model MPI-OM, Technical report, http://www.mpimet.mpg.de/fileadmin/models/MPIOM/
[99] V.P. Dymnikov, V.N. Lykosov, E.M. Volodin, “Modelirovanie klimata i ego izmenenii”, Vestnik Rossiiskoi Academii Nauk, 82:3 (2012), 227–236
[100] K.D. Nikitin, M.A. Olshanskii, K.M. Terekhov, Yu.V. Vassilevski, R.M. Yanbarisov, “An adaptive numerical method for free surface flows passing rigidly mounted obstacles”, Computers and Fluids, 148 (2017), 56–68 | DOI | MR | Zbl
[101] V.A. Gasilov, I.V. Gasilova, L.V. Klochkova, Y.A. Poveshchenko, V.F. Tishkin, “Difference schemes based on the support operator method for fluids dynamics problems in a collector containing gas hydrates”, Comp. Math. and Math. Phys., 55 (2015), 1310–1323 | DOI | MR | Zbl
[102] R.V. Zhalnin, M.E. Ladonkina, V.F. Masyagin, V.F. Tishkin, “Application of the discontinuous Galerkin method for solving parabolic problems in anisotropic media on triangular meshes”, Bulletin of the south Ural state university. Series: Math. Modeling Programming Comp. Software, 9:3 (2016), 144–151 | Zbl
[103] V.A. Balashov, E.B. Savenkov, “Numerical study of a quasi-hydrodynamic system of equations for flow computation at small Mach numbers”, Comp. Math. Math. Phys., 55:10 (2015), 1743–1751 | DOI | MR | Zbl
[104] V.A. Balashov, E.B. Savenkov, A.A. Kuleshov, “Direct numerical simulation of a fluid flow in core samples based on quasi-hydrodynamic equations”, ICCMSE-2016, AIP Conf. Proc., 1790, eds. T.E. Simos et al., 2016, 150006, 4 pp. | DOI
[105] V.A. Balashov, E.B. Savenkov, “Direct pore-scale flow simulation using quasi-hydrodynamic equations”, Doklady Physics, 61:4 (2016), 192–194 | DOI