Parameter identification of fractional derivative order in Bagley--Torvik model
Matematičeskoe modelirovanie, Tome 30 (2018) no. 7, pp. 93-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a second-order differential equation containing a derivative of a fractional order (the Bagley-Torvik equation) in which the order of the derivative is in the range from 1 to 2 and is not known in advance. This model is used to describe oscillation processes in a viscoelastic medium. To study the equation, we use the Laplace transform, which allows us to obtain in an explicit form the image of the solution of the corresponding Cauchy problem. Numerical solutions are constructed for different values of the parameter. On the basis of the solution obtained, a numerical technique is proposed for parametric identification of an unknown order of a fractional derivative from the available experimental data. On the range of possible values of the parameter, the least-squares deviation function is determined. The minimum of this function determines the desired value of the parameter. The approbation of the developed technique on experimental data for polymer concrete samples was carried out, the fractional derivative parameter in the model was determined, the theoretical and experimental curves were compared, the accuracy of the parametric identification and the adequacy of the technique were established.
Keywords: fractional order derivative, Bagley–Torvik equation, viscoelasticity, polymer concrete, parameter identification.
@article{MM_2018_30_7_a6,
     author = {T. S. Aleroev and S. V. Erokhin},
     title = {Parameter identification of fractional derivative order in {Bagley--Torvik} model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {93--102},
     publisher = {mathdoc},
     volume = {30},
     number = {7},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_7_a6/}
}
TY  - JOUR
AU  - T. S. Aleroev
AU  - S. V. Erokhin
TI  - Parameter identification of fractional derivative order in Bagley--Torvik model
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 93
EP  - 102
VL  - 30
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_7_a6/
LA  - ru
ID  - MM_2018_30_7_a6
ER  - 
%0 Journal Article
%A T. S. Aleroev
%A S. V. Erokhin
%T Parameter identification of fractional derivative order in Bagley--Torvik model
%J Matematičeskoe modelirovanie
%D 2018
%P 93-102
%V 30
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_7_a6/
%G ru
%F MM_2018_30_7_a6
T. S. Aleroev; S. V. Erokhin. Parameter identification of fractional derivative order in Bagley--Torvik model. Matematičeskoe modelirovanie, Tome 30 (2018) no. 7, pp. 93-102. http://geodesic.mathdoc.fr/item/MM_2018_30_7_a6/

[1] A.A. Chirkii, I.I. Matichin, “O lineinykh konfliktno upravliaemykh protsessakh s drobnymi proizvodnymi”, Trudy instituta matematiki i mekhaniki UrO RAN, 17, no. 2, 2011, 256–270

[2] D. Ingman, J. Suzdalnitsky, “Control of damping oscillations by fractional differential operator with time-dependent order”, Comput. Methods Appl. Mech. Engrg., 193 (2004), 5585–5595 | DOI | MR | Zbl

[3] D. Ingman, J. Suzdalnitsky, “Iteration method for equation of viscoelastic motion with fractional differential operator of damping”, Comput. Methods Appl. Mech. Engrg., 190 (2001), 5027–5036 | DOI | Zbl

[4] G.K. Koh, J. Kelly, “Application of fractional derivatives to seismic analysis of base-isolated models”, Earthquake engineering and structural dynamics, 19 (1990), 229–241 | DOI

[5] Gh.E. Draganescu, N. Cofan, D.L. Rujan, “Nonlinear vibrations of a nano-sized sensor with fractional damping”, J. Optoelectron. Adv. Mater., 7:2 (2005), 877–884

[6] A. Fenlander, “Modal synthesis when modeling damping by use of fractional derivatives”, AIAA J., 34:5 (1996), 1051–1058 | DOI

[7] R.P. Meilanov, M.S. Ianpolov, “Osobennosti fazovoi traektorii fraktalnogo ostsilliatora”, Pisma v ZhTF, 28:1 (2002), 38–44

[8] S.G. Samko, A.A. Kilbas, O.I. Marichev, Integraly i proizvodnye drobnogo poriadka i nekotorye ikh prilozheniia, Izd-vo “Nauka i tekhnika”, Minsk, 1987, 688 pp.

[9] R.L. Bagley, P.J. Torvik, “A theoretical basis for the application of fractional calculus to viscoelasticity”, J. Rheolog., 27:3 (1983), 201–203 | DOI

[10] R.L. Bagley, P.J. Torvik, “Fractional calculus — a different approach to the analysis of viscoelastically damped structures”, AIAA Journal, 21:5 (1983), 741–748 | DOI | Zbl

[11] B. Ibrahim, Q. Dong, Z. Fan, “Existence for boundary value problems of two-term Caputo fractional differential equations”, J. of nonlinear sciences and appl., 2017, 511–520 | DOI | MR

[12] E.R. Kekharsaeva, V.G. Pirozhkov, “Modelirovanie izmeneniia deformatsionno-prochnostnykh kharakteristik asfaltobetona pri nagruzhenii s pomoshchiu drobnogo ischisleniia”, Sbornik trudov 6-i vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem im. I.F. Obraztsova i Iu.G. Ianovskogo “Mekhanika kompozitsionnykh materialov i konstruktsii, slozhnykh i geterogennykh sred”, IPRIM RAN, M., 2016, 104–109

[13] C.M.A. Vasques, R.A.S. Moreira, J. Dias Rodrigues, “Experimental identification of GHM and ADF parameters for viscoelastic damping modeling”, III European Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering (Lisbon, Portugal, 2006), eds. C. A. Mota Soares et. al.

[14] V.A. Ditkin, A.P. Prudnikov, Integralnye preobrazovaniia i operatsionnoe ischislenie, Nauka, M., 1974, 542 pp.

[15] S.V. Erokhin, T.S. Aleroev, L.Iu. Frishter, “Zadacha Shturma-Liuvillia dlia uravneniia ostsilliatora s viazkouprugim dempfirovaniem”, International Journal for Computational Civil and Structural Engineering, 11:3 (2015), 77–81

[16] E.R. Kekharsaeva, T.S. Aleroev, “Model deformatsionno-prochnostnykh kharakteristik khlorosoderzhashchikh poliefirov na osnove proizvodnykh drobnogo poriadka”, Plasticheskie massy, 2001, no. 3, 35

[17] V.A. Man'kovskii, V.T. Sapunov, “Nomograficheskie svoistva drobno-eksponentsial'noi Efunktsii pri opisanii lineinoi viazkouprugosti”, Zavodskaia laboratoriia. Diagnostika materialov, 66:3 (2000), 45–50 | Zbl