Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_7_a6, author = {T. S. Aleroev and S. V. Erokhin}, title = {Parameter identification of fractional derivative order in {Bagley--Torvik} model}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {93--102}, publisher = {mathdoc}, volume = {30}, number = {7}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_7_a6/} }
TY - JOUR AU - T. S. Aleroev AU - S. V. Erokhin TI - Parameter identification of fractional derivative order in Bagley--Torvik model JO - Matematičeskoe modelirovanie PY - 2018 SP - 93 EP - 102 VL - 30 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_7_a6/ LA - ru ID - MM_2018_30_7_a6 ER -
T. S. Aleroev; S. V. Erokhin. Parameter identification of fractional derivative order in Bagley--Torvik model. Matematičeskoe modelirovanie, Tome 30 (2018) no. 7, pp. 93-102. http://geodesic.mathdoc.fr/item/MM_2018_30_7_a6/
[1] A.A. Chirkii, I.I. Matichin, “O lineinykh konfliktno upravliaemykh protsessakh s drobnymi proizvodnymi”, Trudy instituta matematiki i mekhaniki UrO RAN, 17, no. 2, 2011, 256–270
[2] D. Ingman, J. Suzdalnitsky, “Control of damping oscillations by fractional differential operator with time-dependent order”, Comput. Methods Appl. Mech. Engrg., 193 (2004), 5585–5595 | DOI | MR | Zbl
[3] D. Ingman, J. Suzdalnitsky, “Iteration method for equation of viscoelastic motion with fractional differential operator of damping”, Comput. Methods Appl. Mech. Engrg., 190 (2001), 5027–5036 | DOI | Zbl
[4] G.K. Koh, J. Kelly, “Application of fractional derivatives to seismic analysis of base-isolated models”, Earthquake engineering and structural dynamics, 19 (1990), 229–241 | DOI
[5] Gh.E. Draganescu, N. Cofan, D.L. Rujan, “Nonlinear vibrations of a nano-sized sensor with fractional damping”, J. Optoelectron. Adv. Mater., 7:2 (2005), 877–884
[6] A. Fenlander, “Modal synthesis when modeling damping by use of fractional derivatives”, AIAA J., 34:5 (1996), 1051–1058 | DOI
[7] R.P. Meilanov, M.S. Ianpolov, “Osobennosti fazovoi traektorii fraktalnogo ostsilliatora”, Pisma v ZhTF, 28:1 (2002), 38–44
[8] S.G. Samko, A.A. Kilbas, O.I. Marichev, Integraly i proizvodnye drobnogo poriadka i nekotorye ikh prilozheniia, Izd-vo “Nauka i tekhnika”, Minsk, 1987, 688 pp.
[9] R.L. Bagley, P.J. Torvik, “A theoretical basis for the application of fractional calculus to viscoelasticity”, J. Rheolog., 27:3 (1983), 201–203 | DOI
[10] R.L. Bagley, P.J. Torvik, “Fractional calculus — a different approach to the analysis of viscoelastically damped structures”, AIAA Journal, 21:5 (1983), 741–748 | DOI | Zbl
[11] B. Ibrahim, Q. Dong, Z. Fan, “Existence for boundary value problems of two-term Caputo fractional differential equations”, J. of nonlinear sciences and appl., 2017, 511–520 | DOI | MR
[12] E.R. Kekharsaeva, V.G. Pirozhkov, “Modelirovanie izmeneniia deformatsionno-prochnostnykh kharakteristik asfaltobetona pri nagruzhenii s pomoshchiu drobnogo ischisleniia”, Sbornik trudov 6-i vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem im. I.F. Obraztsova i Iu.G. Ianovskogo “Mekhanika kompozitsionnykh materialov i konstruktsii, slozhnykh i geterogennykh sred”, IPRIM RAN, M., 2016, 104–109
[13] C.M.A. Vasques, R.A.S. Moreira, J. Dias Rodrigues, “Experimental identification of GHM and ADF parameters for viscoelastic damping modeling”, III European Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering (Lisbon, Portugal, 2006), eds. C. A. Mota Soares et. al.
[14] V.A. Ditkin, A.P. Prudnikov, Integralnye preobrazovaniia i operatsionnoe ischislenie, Nauka, M., 1974, 542 pp.
[15] S.V. Erokhin, T.S. Aleroev, L.Iu. Frishter, “Zadacha Shturma-Liuvillia dlia uravneniia ostsilliatora s viazkouprugim dempfirovaniem”, International Journal for Computational Civil and Structural Engineering, 11:3 (2015), 77–81
[16] E.R. Kekharsaeva, T.S. Aleroev, “Model deformatsionno-prochnostnykh kharakteristik khlorosoderzhashchikh poliefirov na osnove proizvodnykh drobnogo poriadka”, Plasticheskie massy, 2001, no. 3, 35
[17] V.A. Man'kovskii, V.T. Sapunov, “Nomograficheskie svoistva drobno-eksponentsial'noi Efunktsii pri opisanii lineinoi viazkouprugosti”, Zavodskaia laboratoriia. Diagnostika materialov, 66:3 (2000), 45–50 | Zbl