Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_7_a3, author = {A. P. Mikhailov and A. P. Petrov and O. G. Proncheva}, title = {A model of information warfare in a society with a piecewise constant periodic function of desstabilizing impact}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {47--60}, publisher = {mathdoc}, volume = {30}, number = {7}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_7_a3/} }
TY - JOUR AU - A. P. Mikhailov AU - A. P. Petrov AU - O. G. Proncheva TI - A model of information warfare in a society with a piecewise constant periodic function of desstabilizing impact JO - Matematičeskoe modelirovanie PY - 2018 SP - 47 EP - 60 VL - 30 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_7_a3/ LA - ru ID - MM_2018_30_7_a3 ER -
%0 Journal Article %A A. P. Mikhailov %A A. P. Petrov %A O. G. Proncheva %T A model of information warfare in a society with a piecewise constant periodic function of desstabilizing impact %J Matematičeskoe modelirovanie %D 2018 %P 47-60 %V 30 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2018_30_7_a3/ %G ru %F MM_2018_30_7_a3
A. P. Mikhailov; A. P. Petrov; O. G. Proncheva. A model of information warfare in a society with a piecewise constant periodic function of desstabilizing impact. Matematičeskoe modelirovanie, Tome 30 (2018) no. 7, pp. 47-60. http://geodesic.mathdoc.fr/item/MM_2018_30_7_a3/
[1] A.A. Samarskii, A.P. Mikhailov, Matematicheskoe modelirovanie, Fismatlit, M., 1997
[2] A.P. Mikhailov, N.V. Kliusov, “O svoistvah prosteishei matematicheskoi modeli rasprostraneniia informatsionnoi ugrozy”, Matematicheskoe modelirovanie sotsialnykh protsessov, 4, Maks Press, M., 2002, 115–123 | Zbl
[3] D. Yanagizawa-Drott, “Propaganda and Conflict: Evidence from the Rwandan Genocide”, The Quarterly Journal of Economics, 129:4 (2014), 1947–1994 | DOI
[4] N.A. Marevtseva, “Prosteishie matematicheskie modeli informatsionnogo protivoborstva”, Sbornik trudov Vrerossiiskikh nauchnykh molodezhnykh shkol, Matematicheskoe modelirovanie i sovremennye informatsionnye tekhnologii, 8, Izd. Iuzhnogo federalnogo universiteta, Rostov-na-Donu, 2009, 354–363
[5] A.P. Mikhailov, N.A. Marevtseva, “Models of information warfare”, Mathematical Models and Computer Simulations, 4:3 (2011), 251–259 | DOI | Zbl
[6] A.P. Petrov, O.G. Proncheva, “Issledovanie modeley informatsionnogo napadeniya i informatsionnogo protivoborstva v strukturirovannom sotsiume”, Matematicheskoe modelirovanie sotsialnykh protsessov, A. P. Mikhaylov, Ekoninform, M., 2015, 136–149
[7] D.J. Daley, D.G. Kendall, “Stochastic Rumors”, Journal of the Institute of Mathematics and its Applications, 1 (1964), 42–55 | DOI | MR
[8] D.P. Maki, M. Thompson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, 1973 | MR
[9] S. Belen, The behaviour of stochastic rumours, PhD Thesis, The University of Adelaide, 2008
[10] S. Belen, C.E.M. Pearce, “Rumours with general initial conditions”, ANZIAM J., 4 (2004), 393–400 | DOI | MR
[11] M. Nekovee, Y. Moreno, G. Bianconi, M. Marsili, “Theory of Rumor Spreading in Complex Social Networks”, Physica A, 374 (2007), 457–470 | DOI
[12] M. Kitsak et al., “Identification of influential spreaders in complex networks”, Nature physics, 6:11 (2010), 888 | DOI
[13] L. Zhao et al., “SIHR rumor spreading model in social networks”, Physica A: Statistical Mechanics and its Applications, 391:7 (2012), 2444–2453 | DOI
[14] V.A. Shvedovskii, “Modelirovanie rasprostraneniia informatsii v smezhnykh sotsialnykh gruppax”, Matematicheskie metody v sotsiologicheskom issledovanii, Nauka, M., 1981, 207–214
[15] G.K. Osei, J.W. Thompson, “The supersession of one rumour by another”, J. of Applied Probability, 14:1 (1977), 127–134 | DOI | MR | Zbl
[16] D.A. Gubanov, D.A. Novikov, A.G. Chkhartishvili, Sotsialnye seti: modeli informatsionnogo vliianiia, upravleniia i protivoborstva, Fizmatlit, M., 2010, 228 pp.
[17] A.G. Chkhartishvili, D.A. Gubanov, “Analysis of User Influence Types in Online Social Networks: An Example of VKontakte”, Proceedings of the 11th IEEE International Conference on Application of Information and Communication Technologies, AICT2017 (Moscow), v. 1, IEEE, M., 2017, 3–5
[18] V.V. Breer, D.A. Novikov, A.D. Rogatkin, Mob Control: Models of Threshold Collective Behavior, Studies in Systems, Decision and Control, 85, Springer, 2017 | DOI | MR
[19] C. Kaligotla, E. Yucesan, S.E. Chick, “An agent based model of spread of competing rumors through online interactions on social media”, Proceedings of the 2015 Winter Simulation Conference, IEEE Press, 2015, 3985–3996 | DOI
[20] R. Escalante, M.A. Odehnal, Deterministic mathematical model for the spread of two rumors, arXiv: 1709.01726 [physics.soc-ph]
[21] A.P. Petrov, A.I. Maslov, N.A. Tsaplin, “Modeling Position Selection by Individuals during Information Warfare in Society”, Mathematical Models and Computer Simulations, 8:4 (2016), 401–408 | DOI | MR | Zbl
[22] A.P. Mikhailov, A.P. Petrov, O.G. Proncheva, “Modeling the effect of political polarization on the outcome of propaganda battle”, Computational mathematics and information technologies, 2017, no. 1, 65–81 http://cmit-journal.ru/publications/1-2017/ | DOI
[23] N. Rashevsky, “Outline of a Physico-mathematical Theory of Excitation and Inhibition”, Protoplasma, 1933
[24] N. Rashevsky, Mathematical Biophysics: Physico-Mathematical Foundations of Biology, Univ. of Chicago, Chicago Press, 1938 | MR
[25] A.P. Mikhailov, A.P. Petrov, O.G. Proncheva, N.A. Marevtseva, “A Model of Information Warfare in a Society Under a Periodic Destabilizing Effect”, Mathematical Models and Computer Simulations, 9:5 (2017), 580–586 | DOI | MR | Zbl