A model of information warfare in a society with a piecewise constant periodic function of desstabilizing impact
Matematičeskoe modelirovanie, Tome 30 (2018) no. 7, pp. 47-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of information warfare in society is considered in the absence of forgetting information by individuals in the case when one of the parties periodically destabilizes the system by means of a short-term jump in the increase in the intensity of broadcasting of the mass media. The model has the form of a system of two nonlinear ordinary differential equations with periodic discontinuous right-hand side. The asymptotics of the first order in a small parameter is constructed, a numerical example illustrating the qualitative behavior of the solution and the closeness of the constructed asymptotics to the exact solution is given.
Keywords: mathematical modeling of social processes, information warfare, ordinary differential equations, asymptotic solution, numerical experiment.
@article{MM_2018_30_7_a3,
     author = {A. P. Mikhailov and A. P. Petrov and O. G. Proncheva},
     title = {A model of information warfare in a society with a piecewise constant periodic function of desstabilizing impact},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--60},
     publisher = {mathdoc},
     volume = {30},
     number = {7},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_7_a3/}
}
TY  - JOUR
AU  - A. P. Mikhailov
AU  - A. P. Petrov
AU  - O. G. Proncheva
TI  - A model of information warfare in a society with a piecewise constant periodic function of desstabilizing impact
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 47
EP  - 60
VL  - 30
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_7_a3/
LA  - ru
ID  - MM_2018_30_7_a3
ER  - 
%0 Journal Article
%A A. P. Mikhailov
%A A. P. Petrov
%A O. G. Proncheva
%T A model of information warfare in a society with a piecewise constant periodic function of desstabilizing impact
%J Matematičeskoe modelirovanie
%D 2018
%P 47-60
%V 30
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_7_a3/
%G ru
%F MM_2018_30_7_a3
A. P. Mikhailov; A. P. Petrov; O. G. Proncheva. A model of information warfare in a society with a piecewise constant periodic function of desstabilizing impact. Matematičeskoe modelirovanie, Tome 30 (2018) no. 7, pp. 47-60. http://geodesic.mathdoc.fr/item/MM_2018_30_7_a3/

[1] A.A. Samarskii, A.P. Mikhailov, Matematicheskoe modelirovanie, Fismatlit, M., 1997

[2] A.P. Mikhailov, N.V. Kliusov, “O svoistvah prosteishei matematicheskoi modeli rasprostraneniia informatsionnoi ugrozy”, Matematicheskoe modelirovanie sotsialnykh protsessov, 4, Maks Press, M., 2002, 115–123 | Zbl

[3] D. Yanagizawa-Drott, “Propaganda and Conflict: Evidence from the Rwandan Genocide”, The Quarterly Journal of Economics, 129:4 (2014), 1947–1994 | DOI

[4] N.A. Marevtseva, “Prosteishie matematicheskie modeli informatsionnogo protivoborstva”, Sbornik trudov Vrerossiiskikh nauchnykh molodezhnykh shkol, Matematicheskoe modelirovanie i sovremennye informatsionnye tekhnologii, 8, Izd. Iuzhnogo federalnogo universiteta, Rostov-na-Donu, 2009, 354–363

[5] A.P. Mikhailov, N.A. Marevtseva, “Models of information warfare”, Mathematical Models and Computer Simulations, 4:3 (2011), 251–259 | DOI | Zbl

[6] A.P. Petrov, O.G. Proncheva, “Issledovanie modeley informatsionnogo napadeniya i informatsionnogo protivoborstva v strukturirovannom sotsiume”, Matematicheskoe modelirovanie sotsialnykh protsessov, A. P. Mikhaylov, Ekoninform, M., 2015, 136–149

[7] D.J. Daley, D.G. Kendall, “Stochastic Rumors”, Journal of the Institute of Mathematics and its Applications, 1 (1964), 42–55 | DOI | MR

[8] D.P. Maki, M. Thompson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, 1973 | MR

[9] S. Belen, The behaviour of stochastic rumours, PhD Thesis, The University of Adelaide, 2008

[10] S. Belen, C.E.M. Pearce, “Rumours with general initial conditions”, ANZIAM J., 4 (2004), 393–400 | DOI | MR

[11] M. Nekovee, Y. Moreno, G. Bianconi, M. Marsili, “Theory of Rumor Spreading in Complex Social Networks”, Physica A, 374 (2007), 457–470 | DOI

[12] M. Kitsak et al., “Identification of influential spreaders in complex networks”, Nature physics, 6:11 (2010), 888 | DOI

[13] L. Zhao et al., “SIHR rumor spreading model in social networks”, Physica A: Statistical Mechanics and its Applications, 391:7 (2012), 2444–2453 | DOI

[14] V.A. Shvedovskii, “Modelirovanie rasprostraneniia informatsii v smezhnykh sotsialnykh gruppax”, Matematicheskie metody v sotsiologicheskom issledovanii, Nauka, M., 1981, 207–214

[15] G.K. Osei, J.W. Thompson, “The supersession of one rumour by another”, J. of Applied Probability, 14:1 (1977), 127–134 | DOI | MR | Zbl

[16] D.A. Gubanov, D.A. Novikov, A.G. Chkhartishvili, Sotsialnye seti: modeli informatsionnogo vliianiia, upravleniia i protivoborstva, Fizmatlit, M., 2010, 228 pp.

[17] A.G. Chkhartishvili, D.A. Gubanov, “Analysis of User Influence Types in Online Social Networks: An Example of VKontakte”, Proceedings of the 11th IEEE International Conference on Application of Information and Communication Technologies, AICT2017 (Moscow), v. 1, IEEE, M., 2017, 3–5

[18] V.V. Breer, D.A. Novikov, A.D. Rogatkin, Mob Control: Models of Threshold Collective Behavior, Studies in Systems, Decision and Control, 85, Springer, 2017 | DOI | MR

[19] C. Kaligotla, E. Yucesan, S.E. Chick, “An agent based model of spread of competing rumors through online interactions on social media”, Proceedings of the 2015 Winter Simulation Conference, IEEE Press, 2015, 3985–3996 | DOI

[20] R. Escalante, M.A. Odehnal, Deterministic mathematical model for the spread of two rumors, arXiv: 1709.01726 [physics.soc-ph]

[21] A.P. Petrov, A.I. Maslov, N.A. Tsaplin, “Modeling Position Selection by Individuals during Information Warfare in Society”, Mathematical Models and Computer Simulations, 8:4 (2016), 401–408 | DOI | MR | Zbl

[22] A.P. Mikhailov, A.P. Petrov, O.G. Proncheva, “Modeling the effect of political polarization on the outcome of propaganda battle”, Computational mathematics and information technologies, 2017, no. 1, 65–81 http://cmit-journal.ru/publications/1-2017/ | DOI

[23] N. Rashevsky, “Outline of a Physico-mathematical Theory of Excitation and Inhibition”, Protoplasma, 1933

[24] N. Rashevsky, Mathematical Biophysics: Physico-Mathematical Foundations of Biology, Univ. of Chicago, Chicago Press, 1938 | MR

[25] A.P. Mikhailov, A.P. Petrov, O.G. Proncheva, N.A. Marevtseva, “A Model of Information Warfare in a Society Under a Periodic Destabilizing Effect”, Mathematical Models and Computer Simulations, 9:5 (2017), 580–586 | DOI | MR | Zbl