LES-simulation of heat transfer in a turbulent pipe flow with lead coolant at different Reynolds numbers
Matematičeskoe modelirovanie, Tome 30 (2018) no. 7, pp. 29-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the numerical simulation of turbulent heat transfer in a circular pipe was performed in a wide range of Reynolds numbers using nonparametric MILES-method CABARET on grids with an incomplete resolution of the turbulence spectrum, as well as with the use of the STAR-CCM+ code in a LES-approximation. The calculation results was compared with the DNS calculations by other authors found in literature, as well as with the RANS-calculations performed in the STAR-CCM+ code. The simulation showed a satisfactory accuracy in determining average, rms and integral characteristics of the flow, and revealed drawbacks in the existing model relations describing the local properties of turbulence. The authors have proposed a wall-bounded thermal function, which might be implement in the RANS-approximations.
Keywords: large eddy simulation, turbulent heat transfer
Mots-clés : CABARET scheme, liquidmetal coolant.
@article{MM_2018_30_7_a2,
     author = {K. M. Sergeenko and V. M. Goloviznin and V. Yu. Glotov},
     title = {LES-simulation of heat transfer in a turbulent pipe flow with lead coolant at different {Reynolds} numbers},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {29--46},
     publisher = {mathdoc},
     volume = {30},
     number = {7},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_7_a2/}
}
TY  - JOUR
AU  - K. M. Sergeenko
AU  - V. M. Goloviznin
AU  - V. Yu. Glotov
TI  - LES-simulation of heat transfer in a turbulent pipe flow with lead coolant at different Reynolds numbers
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 29
EP  - 46
VL  - 30
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_7_a2/
LA  - ru
ID  - MM_2018_30_7_a2
ER  - 
%0 Journal Article
%A K. M. Sergeenko
%A V. M. Goloviznin
%A V. Yu. Glotov
%T LES-simulation of heat transfer in a turbulent pipe flow with lead coolant at different Reynolds numbers
%J Matematičeskoe modelirovanie
%D 2018
%P 29-46
%V 30
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_7_a2/
%G ru
%F MM_2018_30_7_a2
K. M. Sergeenko; V. M. Goloviznin; V. Yu. Glotov. LES-simulation of heat transfer in a turbulent pipe flow with lead coolant at different Reynolds numbers. Matematičeskoe modelirovanie, Tome 30 (2018) no. 7, pp. 29-46. http://geodesic.mathdoc.fr/item/MM_2018_30_7_a2/

[1] A.V. Garbaruk, M.Kh. Strelets, M.L. Shur, Modelirovanie turbulentnosti v raschetakh slozhnykh techenii, uchebnoe posobie, Izd-vo Politekhn. universiteta, SPb, 2012, 88 pp.

[2] Grotzbach G., Carteciano L. N., Validation of turbulence models in the computer code FLUTAN for free hot sodium jet in different buoyancy flow regimes, FZKA 6600, Forschugszentrum Karlsruhe GmbH, Karlsruhe, 2003, 34 pp.

[3] Wolters J., Benchmark Activity on the TEFLU Sodium Jet Experiment, Forschungszentrum Julich GmbH, FZJ, 2002, 66 pp.

[4] Oran E. S., Boris J. P., Numerical Simulation of reactive flow, Cambridge University Press, 2001 | Zbl

[5] Grinstein F. F., Margolin L. G., Rider W. J., Implicit Large Eddy Simulation, Cambridge University Press, 2007 | MR | Zbl

[6] Boris J. P. et al., “New insights into large eddy simulation”, Fluid Dynamics Research, 10:4–6 (1992), 199–228 | DOI

[7] Goloviznin V. M. i dr., Novye algoritmy vychislitelnoi gidrodinamiki dlia mnogoprotsessornykh vychislitelnykh kompleksov, Izdatelstvo Mosk. universiteta, M., 2013, 472 pp.

[8] Goloviznin V. M., Karabasov S. A., “Nelineinaia korrektsiia skhemy KABARE”, Matematicheskoe modelirovanie, 10:12 (1998), 107–123

[9] Nicoud F., Ducros F., “Subgrid-scale stress modelling based on the square of the velocity gradient tensor Flow”, Turbulence and Combustion, 62 (1999), 183–200 | DOI | Zbl

[10] Shih T. H., Liou W. W., Shabbir A., Yang Z., Zhu J., “A New $k-\varepsilon$ Eddy Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation”, Computers Fluids, 24:3 (1995), 227–238 | DOI | Zbl

[11] User Guide. Star-CCM+, Version 10.02 - CD-adapco, 2015

[12] Van Leer B., “Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method”, J. Com. Phys., 32 (1979), 101–136 | DOI | MR | Zbl

[13] Khoury G. K. E. et al., “Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers”, Flow Turbulence Combust, 91 (2013), 475–495 | DOI

[14] Anderson D., Tannekhill D., Pletcher R., Computation Fluid Mechanics and Heat Transfer, CRC Press, 2012, 774 pp. | MR

[15] Baglietto E., 22.315 Applied Computation Fluid Dynamics and Heat Transfer, Lecture 20. Spring 2016, NSE, MIT

[16] Subbotin V. I., Ushakov P. A., “Teploobmen pri techenii zhidkikh metallov v trubakh”, Inzhenerno-fizicheskii zhurnal, 6:4 (1963), 16–20

[17] Kirillov P. L., Iurev Iu. S., Bobkov V. P., Spravochnik po teplogidravlicheskim raschetam (Iadernye reaktory, teploobmenniki, parogeneratory), Energoatomizdat, M., 1990, 360 pp.

[18] Grotzbach G., “Challenges in low-Prandtl number heat transfer simulation and modelling”, Nuclear Engineering and Design, 264 (2013), 41–55 | DOI

[19] Groshev A. I., Slobodchuk V. I., Vliianie turbulentnogo chisla Prandtlia na teploobmen v trubakh, FEI-1463, FEI, Obninsk, 1983, 22 pp.