Numerical simulation of behavior strategies evolution in network structures
Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 117-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of behavior strategies evolution in social networks with arbitrary topology is proposed. The model is formalized as a discrete dynamical system on graph, which defines the scheme of possible interactions between elements of the system. Typical evolutionary scenarios are described on qualitative level. A simple generalization of the model, which allows to model evolution of graph topology induced by elements dynamics, is also discussed. Applications of the proposed model to the problem of corruption simulation are considered.
Keywords: coupled maps, mathematical sociology, graph theory.
@article{MM_2018_30_6_a6,
     author = {D. A. Zenyuk and G. G. Malinetsky and D. S. Faller},
     title = {Numerical simulation of behavior strategies evolution in network structures},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--133},
     publisher = {mathdoc},
     volume = {30},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_6_a6/}
}
TY  - JOUR
AU  - D. A. Zenyuk
AU  - G. G. Malinetsky
AU  - D. S. Faller
TI  - Numerical simulation of behavior strategies evolution in network structures
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 117
EP  - 133
VL  - 30
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_6_a6/
LA  - ru
ID  - MM_2018_30_6_a6
ER  - 
%0 Journal Article
%A D. A. Zenyuk
%A G. G. Malinetsky
%A D. S. Faller
%T Numerical simulation of behavior strategies evolution in network structures
%J Matematičeskoe modelirovanie
%D 2018
%P 117-133
%V 30
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_6_a6/
%G ru
%F MM_2018_30_6_a6
D. A. Zenyuk; G. G. Malinetsky; D. S. Faller. Numerical simulation of behavior strategies evolution in network structures. Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 117-133. http://geodesic.mathdoc.fr/item/MM_2018_30_6_a6/

[1] D. Helbind (ed.), Social self-organization, Springer, Berlin, 2012, 341 pp.

[2] P. Bonacich, P. Lu, Introduction to mathematical sociology, Princeton University Press, Princeton, 2012, 240 pp. | MR | Zbl

[3] J.H. Miller, S.E. Page, Complex adaptive systems: an introduction to computational models of social life, Princeton University press, Princeton, 2007, 288 pp. | MR | Zbl

[4] A.A. Samarskii, A.P. Mikhailov, Principles of mathematical modeling: Ideas, methods, examples, Taylor Francis, London, 2002, 349 pp. | MR | Zbl

[5] D.L. Meadows, D.H. Meadows, J. Randers, Limits to growth: The 30-years update, Chealsea Green Publishing, Hartfrod, 2004, 368 pp.

[6] A.A. Korotayev, “A compact macromodel of world system evolution”, Journal of WorldSystems Research, 11:1 (2005), 79–93

[7] C. Castellano, S. Fortunato, V. Loreto, “Statistical physics of social dynamics”, Reviews of modern physics, 81:2 (2009), 591–646 | DOI

[8] S. Boccaletti et al., “Complex networks: Structure and dynamics”, Physics reports, 424:4 (2006), 175–308 | DOI | MR | Zbl

[9] D.A. Zeniuk, G.G. Malinetskii, D.S. Faller, “Model korruptsionnogo povedeniia v biurokraticheskoi ierarkhii: rezultaty eksperimenta”, Sotsiologicheskie issledovaniia, 10:10 (2014), 76–84

[10] K. Kaneko, I. Tsuda, Complex systems: chaos and beyond, Springer, Berlin, 2000, 273

[11] K. Kaneko, “Pattern dynamics in spatiotemporal chaos”, Physica D, 34:1–2 (1989), 1–41 | DOI | MR | Zbl

[12] J.- R. Chazottes, B. Fernandez (eds.), Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, Springer, Berlin, 2005, 361 | MR | Zbl

[13] R. Coutinho, B. Fernandez, “Fronts in extended systems of bistable maps coupled via convolutions”, Nonlinearity, 17:1 (2004), 23–47 | DOI | MR | Zbl

[14] F. Harary, Graph Theory, Addison-Wesley, Reading, 1994, 283 | MR

[15] P.S. Dodds, D.J. Watts, C.F. Sabel, “Information exchange and the robustness of organizational networks”, PNAS, 100:21 (2003), 12516–12521 | DOI

[16] C. Lemieux, Monte Carlo and Quasi-Monte Carlo sampling, Springer, Berlin, 2009, 387 | MR | Zbl

[17] J. Ito, K. Kaneko, “Self-organization of network structure in coupled-map systems”, Adaptive Networks, eds. T. Gross, H. Sayama, Springer, Berlin, 2009, 137–163 | DOI