Numerical simulation of behavior strategies evolution in network structures
Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 117-133

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of behavior strategies evolution in social networks with arbitrary topology is proposed. The model is formalized as a discrete dynamical system on graph, which defines the scheme of possible interactions between elements of the system. Typical evolutionary scenarios are described on qualitative level. A simple generalization of the model, which allows to model evolution of graph topology induced by elements dynamics, is also discussed. Applications of the proposed model to the problem of corruption simulation are considered.
Keywords: coupled maps, mathematical sociology, graph theory.
@article{MM_2018_30_6_a6,
     author = {D. A. Zenyuk and G. G. Malinetsky and D. S. Faller},
     title = {Numerical simulation of behavior strategies evolution in network structures},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--133},
     publisher = {mathdoc},
     volume = {30},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_6_a6/}
}
TY  - JOUR
AU  - D. A. Zenyuk
AU  - G. G. Malinetsky
AU  - D. S. Faller
TI  - Numerical simulation of behavior strategies evolution in network structures
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 117
EP  - 133
VL  - 30
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_6_a6/
LA  - ru
ID  - MM_2018_30_6_a6
ER  - 
%0 Journal Article
%A D. A. Zenyuk
%A G. G. Malinetsky
%A D. S. Faller
%T Numerical simulation of behavior strategies evolution in network structures
%J Matematičeskoe modelirovanie
%D 2018
%P 117-133
%V 30
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_6_a6/
%G ru
%F MM_2018_30_6_a6
D. A. Zenyuk; G. G. Malinetsky; D. S. Faller. Numerical simulation of behavior strategies evolution in network structures. Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 117-133. http://geodesic.mathdoc.fr/item/MM_2018_30_6_a6/