Problems of joint filtration in melted zone and piezoconductive medium with gas hydrate inclusions
Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 95-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the thermodynamically equilibrium joint discrete model of a two-component three-phase (water, methane, hydrate) filtration fluid dynamics and two-phase processes in a melted zone with absence of gas hydrates is considered , for which the splitting by physical processes is performed. The aim of the study is to construct a joint family of two-layer fully conservative difference schemes of the support operators method with space-time temporal scales in accordance with the proposed algorithm for splitting the equilibrium model in terms of physical processes, both in the melted zone and in the gas hydrate inclusions medium. The direct unsplit utilization of the studying g system for the purposes of determining the dynamics of variables and constructing the implicit difference scheme required for calculations of filtering processes with large steps in time is difficult.
Keywords: gas hydrates, melted zone, support operators, completely conservative difference schemes.
Mots-clés : filtration
@article{MM_2018_30_6_a5,
     author = {P. I. Rahimly and Y. A. Poveshchenko and V. O. Podryga and O. R. Rahimly and I. V. Ritus},
     title = {Problems of joint filtration in melted zone and piezoconductive medium with gas hydrate inclusions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--116},
     publisher = {mathdoc},
     volume = {30},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_6_a5/}
}
TY  - JOUR
AU  - P. I. Rahimly
AU  - Y. A. Poveshchenko
AU  - V. O. Podryga
AU  - O. R. Rahimly
AU  - I. V. Ritus
TI  - Problems of joint filtration in melted zone and piezoconductive medium with gas hydrate inclusions
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 95
EP  - 116
VL  - 30
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_6_a5/
LA  - ru
ID  - MM_2018_30_6_a5
ER  - 
%0 Journal Article
%A P. I. Rahimly
%A Y. A. Poveshchenko
%A V. O. Podryga
%A O. R. Rahimly
%A I. V. Ritus
%T Problems of joint filtration in melted zone and piezoconductive medium with gas hydrate inclusions
%J Matematičeskoe modelirovanie
%D 2018
%P 95-116
%V 30
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_6_a5/
%G ru
%F MM_2018_30_6_a5
P. I. Rahimly; Y. A. Poveshchenko; V. O. Podryga; O. R. Rahimly; I. V. Ritus. Problems of joint filtration in melted zone and piezoconductive medium with gas hydrate inclusions. Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 95-116. http://geodesic.mathdoc.fr/item/MM_2018_30_6_a5/

[1] M. Kurihara et al., “Gas production from methane hydrate reservoirs”, Proc. 7th International Conference on Gas Hydrates (July 2011), Edinburgh, UK, 2011

[2] J.W. Wilder et al., “An international effort to compare gas hydrate reservoir simulators”, Proc. of 6th International Conference on Gas Hydrates (July 2008), Vancouver, Canada, 2008

[3] E. Pinero et al., “3-D numerical modelling of methane hydrate accumulations using PetroMod”, Marine and Petroleum Geology, 71 (2016), 288–295 | DOI

[4] K. Qorbani, B. Kvamme, “Non-equilibrium simulation of CH 4 production from gas hydrate reservoirs through the depressurization method”, Journal of Natural Gas Science and Engineering, 35 (2016), 1544–1554 | DOI

[5] Yu.A. Poveshchenko, V.O. Podryga, P.I. Ragimli, “Ob odnom podkhode svobodno-obiemnoi approksimatsii pezoprovodnoi sredy s gazogidratnymi vkliucheniiami”, Matematika Tsrne Gore [Mathematica Montisnigri], 40 (2017), 68–89

[6] Yu.A. Poveshchenko, V.O. Podryga, P.I. Rahimly, Yu.S. Sharova, “About one discrete model of splitting by the physical processes of a piezoconductive medium with gas hydrate inclusions”, Journal of Physics: Conference Series (JPCS), 946 (2018), 012077 | DOI | MR

[7] Yu.A. Poveshchenko, G.I. Kazakevich, “Matematicheskoe modelirovanie gazogidratnykh protsessov”, Matematicheskie mashiny i sistemy, 3 (2011), 105–110

[8] P.I. Rahimly, Yu.A. Poveshchenko, O.R. Rahimly, V.O. Podryga, G.I. Kazakevich, I.V. Gasilova, “Use of splitting on physical processes for the numerical modeling of gas hydrates dissociation”, Math. Mod. and Comp. Simulations, 10:1 (2018), 69–78 | DOI | MR

[9] S.Sh. Byk, Iu.F. Makogon, V.I. Fomina, Gazovye gidraty, Khimiia, M., 1980, 296 pp.

[10] L.D. Landau, E.M. Lifshitz, Course of theoretical physics, v. 7, Theory of Elasticity, Pergamon Press ltd., Oxford, 1970, 165 pp. | MR

[11] A.V. Koldoba, Yu.A. Poveshchenko, I.V. Gasilova, E.Yu. Dorofeeva, “Raznostnye skhemy metoda opornykh operatorov dlia uravnenii teorii uprugosti”, Matem. modelirovanie, 24:12 (2012), 86–96 | Zbl

[12] A.V. Koldoba, Yu.A. Poveshchenko, E.A. Samarskaia, V.F. Tishkin, Metody matematicheskogo modelirovaniia okruzhaiushchei sredy, Nauka, M., 2000, 254 pp.

[13] E.A. Bondarev, G.D. Babe, A.G. Groisman, M.A. Kanibolotskii, Mekhanika obrazovaniia gidratov v gazovykh potokakh, Nauka, Novosibirsk, 1976, 158 pp.

[14] R.S. Bogatyrenko, Osobennosti razrabotki i ekspluatatsii gazogidratnykh mestorozhdenii (na primere Messoiakhskogo mestorozhdeniia), Dissertatsiia, M., 1979, 159 pp.

[15] A.L. Suhonosenko, Termogidrodinamicheskoe modelirovanie protsessov razrabotki gazogidratnykh mestorozhdenii, Dissertatsiia, M., 2013, 145 pp.

[16] A.N. Dmitrievskii, A.V. Karakin, Yu.A. Poveshchenko, G.I. Kazakevich, P.I. Ragimli, “Gidrodinamicheskoe modelirovanie gidratnogo mestorozhdeniia”, Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2 (2017), 30–35