Comparative analysis of plasma equilibrium computations in toroidal and cylindrical magnetic traps
Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 76-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Toroidal magnetic traps for plasma confinement make up an extended object of controlled nuclear fusion investigations. Mathematical simulation of equilibrium plasma configurations in the traps often deal with their straightened into cylinder analogues. This paper presents a comparative analysis of their numerical investigations in the both geometry variants. Mathematical means of models use two-dimensional boundary problems with the Grad–Shafranov differential equation for the magnetic flux function. As the investigation result we present some quantitative characteristics of differences between toroidal and cylindrical configurations by means of two examples: a plasma torus with longitudinal electrical current and the toroidal trap "Galathea-Belt" with two ring-shaped current carrying conductors, immersed into plasma.
Keywords: magnetic traps, numerical simulation, comparison of toroidal and cylindrical configurations.
Mots-clés : equilibrium plasma configurations
@article{MM_2018_30_6_a4,
     author = {K. V. Brushlinskii and I. A. Kondratyev},
     title = {Comparative analysis of plasma equilibrium computations in toroidal and cylindrical magnetic traps},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {76--94},
     publisher = {mathdoc},
     volume = {30},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_6_a4/}
}
TY  - JOUR
AU  - K. V. Brushlinskii
AU  - I. A. Kondratyev
TI  - Comparative analysis of plasma equilibrium computations in toroidal and cylindrical magnetic traps
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 76
EP  - 94
VL  - 30
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_6_a4/
LA  - ru
ID  - MM_2018_30_6_a4
ER  - 
%0 Journal Article
%A K. V. Brushlinskii
%A I. A. Kondratyev
%T Comparative analysis of plasma equilibrium computations in toroidal and cylindrical magnetic traps
%J Matematičeskoe modelirovanie
%D 2018
%P 76-94
%V 30
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_6_a4/
%G ru
%F MM_2018_30_6_a4
K. V. Brushlinskii; I. A. Kondratyev. Comparative analysis of plasma equilibrium computations in toroidal and cylindrical magnetic traps. Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 76-94. http://geodesic.mathdoc.fr/item/MM_2018_30_6_a4/

[1] Morozov A. I., “On Galateas — plasma traps with conductors, immersed into the plasma”, Sov. J. Plasma Phys., 18 (1992), 159–170

[2] Shafranov V. D., “Plasma equilibrium in a magnetic field”, Reviews of Plasma Physics, v. 2, ed. M.A. Leontovich, Consultant Bureau, NY, 1966, 103–152

[3] Kadomtsev B. B., “Hydromagnetic Stability of a Plasma”, Reviews of Plasma Physics, v. 2, ed. M.A. Leontovich, Consultant Bureau, NY, 1966, 153–206

[4] Solov'ev L.S., “Symmetric Magnetohydrodinamic Flow and Helical Waves in a Circular Plasma Cylinder”, Reviews of Plasma Physics, ed. M.A. Leontovich, Springer, 1967, 277–325 | DOI | Zbl

[5] Solov'ev L.S., “Gidromagnitnaya ustoichivost zamknutykh plasmennykh konfiguratsyi”, Voprosy teorii plasmy, 6, ed. M.A. Leontovich, Atomizdat, M., 1972, 210–289

[6] Brushlinsky K. V., Savelyev V. V., “Magnitnye lovushki dlia uderzhaniia plasmy”, Matem. Modelirovanie, 11:5 (1999), 3–36

[7] Kostomarov D. P., Medvedev S. Yu., Sychygov D. Yu., “Methods for MHD Plasma Equilibria Mathematical Modelling”, Matem. Models and Computer Simulations, 1:2 (2009), 228–254 | DOI | MR

[8] Pustovitov V. D., “Energy Approach to Stability Analysis of the Locked and Rotating Resistive Wall Modes in Tokamaks”, Plasma Physics Reports, 39:3 (2013), 199–208 | DOI | DOI

[9] Medvedev S. Yu., Martynov A. A., Drozdov V. V., Ivanov A. A., Poshekhonov Yu. Yu., “High resolution equilibrium calculations of pedestal and SOL plasma in tokamaks”, Plasma Physics and Controlled Fusion, 59:2 (2017), 025018, 8 pp. | DOI

[10] Morozov A. I., Frank A. G., “A toroidal magnetic trap Galatea with the azimutal current”, Plasma Physics Reports, 20 (1994), 879–886

[11] Brushlinskii K. V., Ignatov P. A., “A Plasmastatic Model of the Galatea-Belt Magnetic Trap”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 2071–2081 | DOI | MR | Zbl

[12] Brushlinskii K. V., Gol'dich A. S., “Mathematical Model of the Galatea-Belt Toroidal Magnetic Trap”, Differential Equations, 52:7 (2016), 845–854 | DOI | DOI | MR | Zbl

[13] Brushlinskii K. V., Goldich A. S., “Plasmastatic model of toroidal trap “Galatea-Belt””, Journal of Physics: Conf. Ser., 788 (2017), 012008 | DOI

[14] Shafranov V. D., “On magnetohydrodinamic equilibrium configurations”, Sov. Phys. JETP, 6 (1958), 545–556 | MR | Zbl

[15] Grad H., Rubin H., “Hydromagnetic equilibria and force-free fields”, Proc. 2nd United Nations Int. Conf. of the Peaceful Uses of Atomic Energy (Geneva, 1958), v. 31, Columbia Univ. Press, N.Y., 1959, 190–197

[16] Brushlinskii K. V., “Two Approaches to the Stability Problem for Plasma Equilibrium in a Cylinder”, J. Appl. Maths. Mech., 65:2 (2001), 229–236 | DOI | MR | Zbl

[17] Bruslinskii K. V., Matematicheskie i vychislitelnye zadachi magnitnoi gazodinamiki, BINOM, Laboratoriia znanii, M., 2009, 200 pp.

[18] Brushlinskii K. V., Matematicheskie osnovy vychislitelnoi mekhaniki zhidkosti, gaza i plasmy, Isd. Dom “Intellekt”, Dolgoprudny, 2017, 272 pp.

[19] Peaceman D. N., Rachford H. H., “The Numerical Solution of parabolic and elliptic differential equations”, SIAM, 3:1 (1955), 28–41 | MR | Zbl

[20] Douglas J., “On the numerical integration of $\partial^2u/\partial x^2+\partial^2u/\partial y^2=\partial u/\partial t$ by implicit methods”, SIAM, 3:1 (1955), 42–65 | MR | Zbl