Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_6_a3, author = {I. A. Blatov and Y. A. Gerasimova and I. V. Kartashevskiy}, title = {Application of spline wavelets or decorrelation of time series}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {60--75}, publisher = {mathdoc}, volume = {30}, number = {6}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_6_a3/} }
TY - JOUR AU - I. A. Blatov AU - Y. A. Gerasimova AU - I. V. Kartashevskiy TI - Application of spline wavelets or decorrelation of time series JO - Matematičeskoe modelirovanie PY - 2018 SP - 60 EP - 75 VL - 30 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_6_a3/ LA - ru ID - MM_2018_30_6_a3 ER -
I. A. Blatov; Y. A. Gerasimova; I. V. Kartashevskiy. Application of spline wavelets or decorrelation of time series. Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 60-75. http://geodesic.mathdoc.fr/item/MM_2018_30_6_a3/
[1] Kleinrock L., Queueing Systems, v. I, Theory, Wiley Interscience, New York, 1975, 417 pp. | MR | Zbl
[2] Tsybakov B. S., “Model teletraphika na osnove samopodobnogo processa”, Radiotechnika, 1999, no. 5, 24–31
[3] Sheluhin O. I., Multifractaly. Infocommunicationnye prilozheniya, Goryachaya liniya–Telecom, M., 2011, 576 pp.
[4] Umnyashkin S. V., Kochetkov M. E., “Analiz effectivnosti ispolsovaniya ortogonalnyh preobrazovanij dlja zifrovogo kodirovanija korrelirovannyh dannyh”, Izvestia vuzov. Electronica, 1998, no. 6, 79–84
[5] Umnyashkin S. V., “Analiz effectivnosti primeneniya ortogonalnyh preobrazovanij dlja kodirovanija diskretnyh signalov s korrelirovannymi otschetami”, Zifrovaja obrabotka signalov, 2008, no. 4, 15–18
[6] Bumagin A., Gondar A., Steshenko V., Kalashnikov K., Prudnikov A., “Harakteristiki decorreliruyuschih preobrazopvanij dlya zadachi szhatia izobrazhenij”, Komponenty i tehnologii, 2010, no. 4, 113–116
[7] Ahmed N., Rao K. R., Orthogonal Transforms for Digital Signal Processing, Springer-Verlag, Berlin, 1975, 258 pp. | MR | Zbl
[8] Zalmanson L. A., Preobrazovanie Furje, Uolsha, Haara i ih primenenie v upravlenii, svyasi i drygih oblastyah, Nauka, M., 1989, 496 pp.
[9] Blatov I. A., “On algebras and applications of operators with pseudosparse matrices”, Sibirian mathematical journal, 37:1 (1996), 32–52 | DOI | MR | Zbl
[10] Blatov I. A., Rogova N. V., “Application of semiorthogonal spline wavelets and the Galerkin method to the numerical simulation of thin wire antennas”, Comp. Math. Math. Phys., 53:5 (2013), 727–736 | DOI | Zbl
[11] Daubechies I., Ten Lectures on Wavelets, Society for Industrial and applied mathematics, Philadelpia, Pensilvania, 1992 | MR | Zbl
[12] Ford J. M., Oseledets I. V., Tyrtyshnikov E. E., “Matrix approximation and solvers using tensor products and non-standard wavelet transforms related to irregular grids”, Russian Journal of Numerical Analysis and Mathematical Modelling, 19:2 (2004), 185–204 | DOI | MR | Zbl
[13] Oseledets I. V., Tyrtyshnikov E. E., “Algebraic wavelet transform via quantics tensor train decomposition”, SIAM Journal on Scientific Computing, 33:3 (2011), 1315–1328 | DOI | MR | Zbl
[14] Dem'yanovich Y. K., Anolic V. V., Ivantsova O. N., “Adaptive properties of spline-wavelet approximation”, Journal of Mathematical Sciences, 210:2 (2015), 176–194 | DOI | MR
[15] Dem'yanovich Y. K., Vager B. G., “Spline-wavelet decomposition on an interval”, Journal of Mathematical Sciences, 207:5 (2015), 736–752 | DOI | MR | Zbl
[16] Shumilov B. M., “Multiwavelets of the third-degree Hermitian splines orthogonal to cubic polynomials”, Mathematical Models and Computer Simulations, 5:6 (2013), 511–519 | DOI | MR
[17] Shumilov B. M., “Splitting algorithms for the wavelet transform of first-degree splines on nonuniform grids”, Comp. Math. Math. Phys., 56:7 (2016), 1209–1219 | DOI | MR | Zbl
[18] Shumilov B. M., “Semi-orthogonal spline-wavelets with derivatives and the algorithm with splitting”, Numerical Analysis and Applications, 10:1 (2017), 90–100 | DOI | MR | Zbl
[19] Blatov I. A., Gerasimova U. A., Kartashevskiy I. V., “Application of fast discrete wavelet transformation on the basis of spline wavelet for loosening correlation of sequence of data in mass service theory”, CEUR Workshop “Proceedings of International Conference Information Technology and Nanotechnology”, ITNT 2015, 2015, 242–245
[20] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitel'noi matematike, Nauka, M., 1976, 248 pp.
[21] Kalitkin N. N., Shlyakhov N. M., “B-splines of arbitrary degree”, DAN, mathem., 1999, 28–31 | MR | Zbl
[22] Zavialov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splajn funkcij, Nauka, M., 1980, 352 pp.
[23] Stollnitz Eric J., DeRose Tony D., Salesin David H., Wavelets for computer graphics: theory and applications, Morgan Kaufmann, San Francisco, 1996
[24] Fahmy M. F., Gamal Fahmy, Fahmy O. F., “B-spline wavelets for signal denoising and image compression”, SLViP, 2011, no. 5, 141–153
[25] Kartashevskij I. V., “Raschet koefficientov korrelacii vremennyh intervalov v posledovatelnosti sobytij”, Electrosvyaz, 2012, no. 10, 37–39
[26] Demko S., “Inverses of band matrices and local convergence of spline projections”, SIAM J. on Numer. Anal., 14:4 (1977), 616–619 | DOI | MR | Zbl