The verification of the calculation of stationary subsonic flows and the presentation of results
Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 21-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The principle of pressure maximum is proved for a stationary three-dimensional vortex flow of an ideal gas (without the assumption of barotropicity). Based on the fact that in areas where the solution with high accuracy modeled by the Euler equations must be fulfilled and consequences of these equations, obtained subsonic principle is proposed to be used for verification of numerical solutions of boundary value problems for Euler equations for an ideal gas and for the Navier–Stokes equations for viscous gas. Conditions of the maximum principle include the value of the $Q$-parameter, image surface level of which is currently widely used to visualize the flow pattern. The proposed principle of maximum pressure reveals the meaning of the surface $Q=0$. It divides the flow region into the subdomain $Q>0$, which cannot has a local pressure maximum points, and subdomain $Q0$ which cannot has a local pressure minimum points. A similar meaning of the parameter $Q$ was known for incompressible fluid (H. Rowland, 1880; G. Hamel, 1936). The expression for the $Q$-parameter contains only the first derivatives of the components of the velocity, which allows determining the sign ($+/–$) of $Q$ even for numerical solutions obtained by the methods of low order. An example of the numerical solution verification using subsonic maximum pressure principle is presented. Analysis of the results of numerical calculation of the flow around the aircraft carrier ship during its movement and the presence of atmospheric winds showed that if the calculation results are used for the simulation of complex flight modes and to analyze the state of the atmosphere from the point of view of safe air traffic, visualization the flow pattern by $Q=\mathrm{const}$ surfaces is not informative. In particular, these surfaces do not reflect the true picture of the wind shear, which is perceived directly falls into a flying vehicle. To verify the numerical method, it is sufficient to provide only a surface $Q=0$, which has a clear physical meaning.
Mots-clés : Euler equations
Keywords: Navier–Stokes equations, subsonic vortex flows, subsonic principle of pressure maximum, correctness of problems, forms of calculation results presentation, verification of calculation results.
@article{MM_2018_30_6_a1,
     author = {V. V. Vyshinsky and G. B. Sizykh},
     title = {The verification of the calculation of stationary subsonic flows and the presentation of results},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--38},
     publisher = {mathdoc},
     volume = {30},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_6_a1/}
}
TY  - JOUR
AU  - V. V. Vyshinsky
AU  - G. B. Sizykh
TI  - The verification of the calculation of stationary subsonic flows and the presentation of results
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 21
EP  - 38
VL  - 30
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_6_a1/
LA  - ru
ID  - MM_2018_30_6_a1
ER  - 
%0 Journal Article
%A V. V. Vyshinsky
%A G. B. Sizykh
%T The verification of the calculation of stationary subsonic flows and the presentation of results
%J Matematičeskoe modelirovanie
%D 2018
%P 21-38
%V 30
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_6_a1/
%G ru
%F MM_2018_30_6_a1
V. V. Vyshinsky; G. B. Sizykh. The verification of the calculation of stationary subsonic flows and the presentation of results. Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 21-38. http://geodesic.mathdoc.fr/item/MM_2018_30_6_a1/

[1] H. Rowland, “On the motion of a perfect incompressible fluid when no bodies are present”, American Journal of Mathematics, 3 (1880), 226–268 | DOI | MR

[2] H. Lamb, Hydrodynamics, Cambridge University Press, 1895, 636 pp. | MR

[3] G. Hamel, “Ein allgemeiner Satz uber den Druck bei der Bewegung volumbestandiger Flussigkeiten”, Monatshefte Math. Phys., 43 (1936), 345–363 | DOI | MR

[4] J. Serrin, Mathematical principles of classical fluid mechanics, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1959, 148 pp. | MR

[5] C. Truesdell, “Two Measures of Vorticity”, J. Rational Mech. Anal., 2 (1953), 173–217 | MR | Zbl

[6] M. Shiffman, “On the existence of subsonic flows of a compressible fluid”, J. Rational Mech. Anal., 1 (1952), 605–652 | MR | Zbl

[7] L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley Sons Inc., NY., 1958, 164 pp. | MR | Zbl

[8] L.G. Loytsyansky, Mechanics of Liquids and Gases, Pergamon Press, Oxford, 1966 | MR

[9] D. Gilbarg, M. Shiffman, “On Bodies Achieving Extreme Value of the Critical Mach Number. I”, J. Rational Mech. Anal., 3:2 (1954), 209–230 | MR | Zbl

[10] A.N. Burmistrov, V.P. Kovalev, G.B. Sizykh, “Printsip maksimuma dlia resheniia uravneniia ellipticheskogo tipa s neogranichennymi koeffitsientami”, TRUDY MFTI, 6:4 (2014), 97–102

[11] G.B. Sizykh, “Priznak nalichiia tochki tormozheniia v ploskom bezvikhrevom techenii idealnogo gaza”, TRUDY MFTI, 7:2(26) (2015), 108–112

[12] V.N. Golubkin, G.B. Sizykh, “Maximum Principle for Bernoulli Function”, TsAGI Science Journal, 46:5 (2015), 485–490 | DOI

[13] E. Hopf, “Elementare Bemerkungen uber die Losungen partieller Differentialgleichungen zweiter Ordnung vom Elliptischen Typus”, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 19 (1927), 147–152

[14] C. Miranda, Equazioni alle derivate parziali di tipo ellittico, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1955, 256 pp. | MR | Zbl

[15] A.I. Besportochnyy, A.N. Burmistrov, G.B. Sizykh, “Variant teoremy Hopfa”, TRUDY MFTI, 8:1 (2016), 115–122 | Zbl

[16] V.V. Vyshinskiy, V.K. Ivanov, A.V. Terpugov, “Modelirovanie slozhnykh rezhimov poleta na pilotazhnykh stendakh s uchetom atmosfernoy turbulentnosti”, TRUDY MFTI, 7:1 (2015), 36–42

[17] V.V. Vyshinskii, Programma generatsii nachalno-kraevykh uslovii pri modelirovanii obtekaniia landshafta (WINDGUST), SVIDETELSTVO o gosudarstvennoi registratsii programmy dlia EVM, No 2015616444. Data gos. registratsii 09.06.2015

[18] J.C.R. Hunt, A.A. Wray, P. Moin, “Center For Turbulence Research”, Proceedings of the Summer Program, 1988, 193–208

[19] J. Jeong, F. Hussain, “On the identification of a vortex”, J. Fluid Mech., 285 (1995), 69–94 | DOI | MR | Zbl

[20] Y. Dubief, F. Delcayre, “On coherent-vortex identification in turbulence”, Journal of Turbulence, 1:1 (2000), 1–22 | MR | Zbl

[21] M. Lesieur, P. Begou, E. Briand, A. Danet, F. Delcayre, J.L. Aider, “Coherent-vortex dynamics in large-eddy simulations of turbulence”, Journal of Turbulence, 4:1 (2003), 1–16 | MR

[22] C.E. Cala, E.C. Fernandes, M.V. Heitor, S.I. Shtork, “Coherent structures in unsteady swirling jet flow”, Exp. Fluids, 40:2 (2006), 267–276 | DOI

[23] I.S. Anufriev, Yu.A. Anikin, E.Yu. Shadrin, O.V. Sharypov, “Diagnostics of swirl flow spatial structure in a vortex furnace model”, Thermophysics and Aeromechanics, 21:6 (2014), 775–778 | DOI | Zbl