Simulation of unsteady turbulent flow around a cylinder prescribed by immersed boundary method
Matematičeskoe modelirovanie, Tome 30 (2018) no. 5, pp. 117-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a technique for numerical modeling of nonstationary turbulent flows. A special feature of the technique is the application of the immersed boundary method to ensure that the boundary conditions on the surface of streamlined bodies are satisfied in the resulting numerical solution. It is used for the numerical modeling of the turbulent flow past a three-dimensional cylinder. Obtained numerical solution is compared with a large number of experimental and calculated reference data and the results of calculations using body-fitted grids.
Keywords: numerical modeling, turbulent flow, immersed boundary method.
@article{MM_2018_30_5_a7,
     author = {I. V. Abalakin and A. P. Duben and N. S. Zhdanova and T. K. Kozubskaya},
     title = {Simulation of unsteady turbulent flow around a cylinder prescribed by immersed boundary method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--133},
     publisher = {mathdoc},
     volume = {30},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_5_a7/}
}
TY  - JOUR
AU  - I. V. Abalakin
AU  - A. P. Duben
AU  - N. S. Zhdanova
AU  - T. K. Kozubskaya
TI  - Simulation of unsteady turbulent flow around a cylinder prescribed by immersed boundary method
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 117
EP  - 133
VL  - 30
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_5_a7/
LA  - ru
ID  - MM_2018_30_5_a7
ER  - 
%0 Journal Article
%A I. V. Abalakin
%A A. P. Duben
%A N. S. Zhdanova
%A T. K. Kozubskaya
%T Simulation of unsteady turbulent flow around a cylinder prescribed by immersed boundary method
%J Matematičeskoe modelirovanie
%D 2018
%P 117-133
%V 30
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_5_a7/
%G ru
%F MM_2018_30_5_a7
I. V. Abalakin; A. P. Duben; N. S. Zhdanova; T. K. Kozubskaya. Simulation of unsteady turbulent flow around a cylinder prescribed by immersed boundary method. Matematičeskoe modelirovanie, Tome 30 (2018) no. 5, pp. 117-133. http://geodesic.mathdoc.fr/item/MM_2018_30_5_a7/

[1] Shur M. L., Spalart P. R., Strelets M. Kh., Travin A. K., “A hybrid RANS-LES approach with delayed-DES and wall modeled LES capabilities”, Intern. J. Heat and Fluid Flow, 29:6 (2008), 1638–1649 | DOI

[2] Peskin C. S., “Flow patterns around heart valves: a numerical method”, J. Comput. Phys., 10:2 (1972), 252–271 | DOI | MR | Zbl

[3] Iaccarino G., Verzicco R., “Immersed boundary technique for turbulent flow simulation”, Appl. Mech. Rev., 56 (2003), 331–347 | DOI

[4] Mittal R., Iaccarino G., “Immersed boundary Methods”, Annu. Rev. Fluid Mech., 37 (2005), 239–261 | DOI | MR | Zbl

[5] Angot Ph., Bruneau C.-H., Fabrie P., “A penalization method to take into account obstacles in incompressible viscous flows”, Numer. Math., 81 (1991), 497–520 | DOI | MR

[6] Brown-Dymkoski E., Kasimov N., Vasilyev O., “A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows”, J. Comput. Phys., 262 (2014), 344–357 | DOI | MR | Zbl

[7] Mochel L., Weiss P.-E., Deck S., “Zonal Immersed Boundary Conditions: Application to a High-Reynolds-Number Afterbody Flow”, AIAA J., 52:12 (2014), 2782–2794 | DOI

[8] Lysenko D. A., Ertesvåg I. S., Rian K. E., “Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox Flow”, Turbulence and Combustion, 89:4 (2012), 491 | DOI

[9] Pereira F. S., Vaz G., Eca L., “Flow Past a Circular Cylinder: A Comparison Between RANS and Hybrid Turbulence Models for a Low Reynolds Number”, Proc. of 34th International Conference on Ocean, Offshore and Arctic Engineering (St. John's, Newfoundland, Canada, May 31–June 5, 2015), ASME

[10] Spalart P. R., Allmaras S. R., “A One-Equation Turbulence Model for Aerodynamic Flows”, Recherche Aerospatiale, 1994, no. 1, 5–21

[11] Duben A. P., “Computational Technologies for Simulation of Complex Near-Wall TurbulentFlows Using Unstructured Meshes”, Mathematical Models and Computer Simulations, 6:2 (2014), 162–171 | DOI | MR

[12] Abalakin I., Bakhvalov P., Kozubskaya T., “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Methods Fluids, 81:6 (2016), 331–356 | DOI | MR

[13] Bakhvalov P. A., Kozubskaya T. K., “Construction of Edge-Based 1-Exact Schemes for Solving the Euler Equations on Hybrid Unstructured Meshes”, Computational Mathematics and Mathematical Physics, 57:4 (2017), 698–705 | DOI | MR

[14] Abalakin I. V., Bakhvalov P. A., Gorobets A. V., Duben A. P., Kozubskaya T. K., “Parallel research code NOISEtte for large-scale CFD and CAA simulations”, Vychisl. Metody Programm., 13:3 (2012), 110–125

[15] Breuer M., “Large eddy simulation of the sub-critical flow past a circular cylinder: numerical and modeling aspects”, Int. J. Numer. Methods Fluids, 28 (1998), 1281–1302 | 3.0.CO;2-%23 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[16] Wissink J. G., Rodi W., “Numerical study of the near wake of a circular cylinder”, Int. J. Heat Fluid Flow, 29 (2008), 1060–1070 | DOI

[17] Ouvrard H., Koobus B., Dervieux A., Salvetti M. V., “Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids”, Comput. Fluids, 39 (2010), 1083–1094 | DOI | Zbl

[18] Cardell G. S., Flow past a circular cylinder with a permeable splitter plate, PhD thesis, Graduate Aeronautical Lab., California Inst. of Technology, 1993

[19] Lourenco L. M., Shih C., “Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study”, Numerical Experiments on the Flow Past a Circular Cylinder at Sub-Critical Reynolds Number, Tech. Rep. TF-62, eds. P. Beaudan, P. Moin, Stanford University, 1994

[20] Parnaudeau P., Carlier J., Heitz D., Lamballais E., “Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900”, Phys. Fluids, 20:8 (2008), 085101 | DOI | Zbl

[21] Norberg C., “Experimental investigation of the flow around a circular cylinder: influence of aspect ratio”, J. Fluid Mech., 258 (1994), 287–316 | DOI

[22] Kravchenko A., Moin P., “Numerical studies of flow over a circular cylinder at Re=3900”, Phys. Fluids, 12:2 (2000), 403–417 | DOI | MR | Zbl