Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_5_a7, author = {I. V. Abalakin and A. P. Duben and N. S. Zhdanova and T. K. Kozubskaya}, title = {Simulation of unsteady turbulent flow around a cylinder prescribed by immersed boundary method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {117--133}, publisher = {mathdoc}, volume = {30}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_5_a7/} }
TY - JOUR AU - I. V. Abalakin AU - A. P. Duben AU - N. S. Zhdanova AU - T. K. Kozubskaya TI - Simulation of unsteady turbulent flow around a cylinder prescribed by immersed boundary method JO - Matematičeskoe modelirovanie PY - 2018 SP - 117 EP - 133 VL - 30 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_5_a7/ LA - ru ID - MM_2018_30_5_a7 ER -
%0 Journal Article %A I. V. Abalakin %A A. P. Duben %A N. S. Zhdanova %A T. K. Kozubskaya %T Simulation of unsteady turbulent flow around a cylinder prescribed by immersed boundary method %J Matematičeskoe modelirovanie %D 2018 %P 117-133 %V 30 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2018_30_5_a7/ %G ru %F MM_2018_30_5_a7
I. V. Abalakin; A. P. Duben; N. S. Zhdanova; T. K. Kozubskaya. Simulation of unsteady turbulent flow around a cylinder prescribed by immersed boundary method. Matematičeskoe modelirovanie, Tome 30 (2018) no. 5, pp. 117-133. http://geodesic.mathdoc.fr/item/MM_2018_30_5_a7/
[1] Shur M. L., Spalart P. R., Strelets M. Kh., Travin A. K., “A hybrid RANS-LES approach with delayed-DES and wall modeled LES capabilities”, Intern. J. Heat and Fluid Flow, 29:6 (2008), 1638–1649 | DOI
[2] Peskin C. S., “Flow patterns around heart valves: a numerical method”, J. Comput. Phys., 10:2 (1972), 252–271 | DOI | MR | Zbl
[3] Iaccarino G., Verzicco R., “Immersed boundary technique for turbulent flow simulation”, Appl. Mech. Rev., 56 (2003), 331–347 | DOI
[4] Mittal R., Iaccarino G., “Immersed boundary Methods”, Annu. Rev. Fluid Mech., 37 (2005), 239–261 | DOI | MR | Zbl
[5] Angot Ph., Bruneau C.-H., Fabrie P., “A penalization method to take into account obstacles in incompressible viscous flows”, Numer. Math., 81 (1991), 497–520 | DOI | MR
[6] Brown-Dymkoski E., Kasimov N., Vasilyev O., “A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows”, J. Comput. Phys., 262 (2014), 344–357 | DOI | MR | Zbl
[7] Mochel L., Weiss P.-E., Deck S., “Zonal Immersed Boundary Conditions: Application to a High-Reynolds-Number Afterbody Flow”, AIAA J., 52:12 (2014), 2782–2794 | DOI
[8] Lysenko D. A., Ertesvåg I. S., Rian K. E., “Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox Flow”, Turbulence and Combustion, 89:4 (2012), 491 | DOI
[9] Pereira F. S., Vaz G., Eca L., “Flow Past a Circular Cylinder: A Comparison Between RANS and Hybrid Turbulence Models for a Low Reynolds Number”, Proc. of 34th International Conference on Ocean, Offshore and Arctic Engineering (St. John's, Newfoundland, Canada, May 31–June 5, 2015), ASME
[10] Spalart P. R., Allmaras S. R., “A One-Equation Turbulence Model for Aerodynamic Flows”, Recherche Aerospatiale, 1994, no. 1, 5–21
[11] Duben A. P., “Computational Technologies for Simulation of Complex Near-Wall TurbulentFlows Using Unstructured Meshes”, Mathematical Models and Computer Simulations, 6:2 (2014), 162–171 | DOI | MR
[12] Abalakin I., Bakhvalov P., Kozubskaya T., “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Methods Fluids, 81:6 (2016), 331–356 | DOI | MR
[13] Bakhvalov P. A., Kozubskaya T. K., “Construction of Edge-Based 1-Exact Schemes for Solving the Euler Equations on Hybrid Unstructured Meshes”, Computational Mathematics and Mathematical Physics, 57:4 (2017), 698–705 | DOI | MR
[14] Abalakin I. V., Bakhvalov P. A., Gorobets A. V., Duben A. P., Kozubskaya T. K., “Parallel research code NOISEtte for large-scale CFD and CAA simulations”, Vychisl. Metody Programm., 13:3 (2012), 110–125
[15] Breuer M., “Large eddy simulation of the sub-critical flow past a circular cylinder: numerical and modeling aspects”, Int. J. Numer. Methods Fluids, 28 (1998), 1281–1302 | 3.0.CO;2-%23 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[16] Wissink J. G., Rodi W., “Numerical study of the near wake of a circular cylinder”, Int. J. Heat Fluid Flow, 29 (2008), 1060–1070 | DOI
[17] Ouvrard H., Koobus B., Dervieux A., Salvetti M. V., “Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids”, Comput. Fluids, 39 (2010), 1083–1094 | DOI | Zbl
[18] Cardell G. S., Flow past a circular cylinder with a permeable splitter plate, PhD thesis, Graduate Aeronautical Lab., California Inst. of Technology, 1993
[19] Lourenco L. M., Shih C., “Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study”, Numerical Experiments on the Flow Past a Circular Cylinder at Sub-Critical Reynolds Number, Tech. Rep. TF-62, eds. P. Beaudan, P. Moin, Stanford University, 1994
[20] Parnaudeau P., Carlier J., Heitz D., Lamballais E., “Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900”, Phys. Fluids, 20:8 (2008), 085101 | DOI | Zbl
[21] Norberg C., “Experimental investigation of the flow around a circular cylinder: influence of aspect ratio”, J. Fluid Mech., 258 (1994), 287–316 | DOI
[22] Kravchenko A., Moin P., “Numerical studies of flow over a circular cylinder at Re=3900”, Phys. Fluids, 12:2 (2000), 403–417 | DOI | MR | Zbl