Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_5_a6, author = {M. E. Ladonkina and O. A. Neklyudova and V. F. Tishkin}, title = {Construction of the limiter based on averaging of solutions for discontinued {Galerkin} method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {99--116}, publisher = {mathdoc}, volume = {30}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_5_a6/} }
TY - JOUR AU - M. E. Ladonkina AU - O. A. Neklyudova AU - V. F. Tishkin TI - Construction of the limiter based on averaging of solutions for discontinued Galerkin method JO - Matematičeskoe modelirovanie PY - 2018 SP - 99 EP - 116 VL - 30 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_5_a6/ LA - ru ID - MM_2018_30_5_a6 ER -
%0 Journal Article %A M. E. Ladonkina %A O. A. Neklyudova %A V. F. Tishkin %T Construction of the limiter based on averaging of solutions for discontinued Galerkin method %J Matematičeskoe modelirovanie %D 2018 %P 99-116 %V 30 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2018_30_5_a6/ %G ru %F MM_2018_30_5_a6
M. E. Ladonkina; O. A. Neklyudova; V. F. Tishkin. Construction of the limiter based on averaging of solutions for discontinued Galerkin method. Matematičeskoe modelirovanie, Tome 30 (2018) no. 5, pp. 99-116. http://geodesic.mathdoc.fr/item/MM_2018_30_5_a6/
[1] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl
[2] M.E. Ladonkina, O.A. Nekliudova, V.F. Tishkin, “Issledovanie vliianiia limitera na poriadok tochnosti resheniia razryvnym metodom Galerkina”, Preprint IPM im. M.V. Keldysha, 2012, 34, 31 pp.
[3] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, Math. Mod. and Comp. Simul., 5:4 (2013), 346–350 | DOI | MR | Zbl
[4] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, “Application of the RKDG Method for Gas Dynamics Problems”, Math. models and computer simulations, 6:4 (2014), 397–408 | DOI | MR | Zbl
[5] L. Krivodonova, “Limiters for high-order discontinuous Galerkin methods”, Journal of Computational Physics, 226:1 (2007), 276–296 | DOI | MR
[6] X. Zhong, C.-W. Shu, “A simple weighted Essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods”, J. of Computational Physics, 232 (2013), 397–415 | DOI | MR
[7] J. Qiu, C.-W. Shu, “Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters”, SIAM J. Sci. Comput., 26:3 (2006), 907–929 | DOI | MR
[8] C.-W. Shu, “High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments”, J. of Computat. Physics, 316 (2016), 598–613 | DOI | MR | Zbl
[9] H. Luo, J.D. Baum, R. Lohner, “A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids”, Journal of Computational Physics, 225:1 (2007), 686–713 | DOI | MR | Zbl
[10] J. Zhu, X. Zhong, C.-W. Shu, J. Qiu, “Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes”, J. of Computational Physics, 248 (2013), 200–220 | DOI | MR | Zbl
[11] V.V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Computational Mathematics and Mathematical Physics, 1:2 (1962), 304 | DOI | MR
[12] P.D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | DOI | MR | Zbl
[13] S.K. Godunov, “A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics”, Sbornik: Mathematics, 47:8–9 (1959), 357–393 | MR | Zbl
[14] A. Harten, “High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, 49 (1983), 357–393 | DOI | MR | Zbl
[15] G.A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, Journal of Computational Physics, 27:1 (1978), 1–31 | DOI | MR | Zbl
[16] P.D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | DOI | MR | Zbl
[17] P.V. Bulat, K.N. Volkov, “One-dimension gas dynamics problems and their solution based on high-resolution finite difference schemes”, Scientific and technical journal of information technologies, mechanics and optics, 15:4 (2015), 731–740
[18] M. Arora, P.L. Roe, “A well-behaved TVD limiter for high-resolution calculations of unsteady flow”, Journal of Computational Physics, 132:1 (1997), 3–11 | DOI | MR | Zbl
[19] P.R. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. of Computat. Physics, 54:1 (1984), 115–173 | DOI | MR | Zbl
[20] B. Einfeldt, C.D. Munz, P.L. Roe, B. Sjogren, “On Godunov-type methods near low densities”, J. of Computational Physics, 92:2 (1991), 273–295 | DOI | MR | Zbl
[21] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes II”, Journal of Computational Physics, 83 (1989), 32–78 | DOI | MR | Zbl
[22] M.E. Ladonkina, O.A. Nekliudova, V.F. Tishkin, “Ispolzovanie usrednenii dlia sglazhivaniia reshenii v razryvnom metode Galerkina”, Keldysh Institute preprints, 2017, 089, 32 pp. | Zbl