Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_5_a5, author = {N. A. Zyuzina and O. A. Kovyrkina and V. V. Ostapenko}, title = {On the monotonicity of the {CABARET} scheme approximating a scalar conservation law with alternating characteristic field}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {76--98}, publisher = {mathdoc}, volume = {30}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_5_a5/} }
TY - JOUR AU - N. A. Zyuzina AU - O. A. Kovyrkina AU - V. V. Ostapenko TI - On the monotonicity of the CABARET scheme approximating a scalar conservation law with alternating characteristic field JO - Matematičeskoe modelirovanie PY - 2018 SP - 76 EP - 98 VL - 30 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_5_a5/ LA - ru ID - MM_2018_30_5_a5 ER -
%0 Journal Article %A N. A. Zyuzina %A O. A. Kovyrkina %A V. V. Ostapenko %T On the monotonicity of the CABARET scheme approximating a scalar conservation law with alternating characteristic field %J Matematičeskoe modelirovanie %D 2018 %P 76-98 %V 30 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2018_30_5_a5/ %G ru %F MM_2018_30_5_a5
N. A. Zyuzina; O. A. Kovyrkina; V. V. Ostapenko. On the monotonicity of the CABARET scheme approximating a scalar conservation law with alternating characteristic field. Matematičeskoe modelirovanie, Tome 30 (2018) no. 5, pp. 76-98. http://geodesic.mathdoc.fr/item/MM_2018_30_5_a5/
[1] V.M. Goloviznin, A.A Samarskii, “Raznostnaia approksimatsiia konvektivnogo perenosa s prostranstvennym rasshchepleniem vremennoj proizvodnoj”, Matem. modelirovanie, 10:1 (1998), 86–100
[2] V.M. Goloviznin, A.A. Samarskii, “Nekotorye svoistva raznostnoj skhemy “KABARE””, Matem. modelirovanie, 10:1 (1998), 101–116 | Zbl
[3] B.L. Rozhdestvenskii, N.N. Yanenko, Sistemy kvasilineinykh uravnenij, Nauka, M., 1978, 687 pp.
[4] A.G. Kulikovskii, N.V. Pogorelov, A.Yu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem yravnenij, Fizmatlit, M., 2001, 607 pp.
[5] V.M. Goloviznin, “Balanced characteristic method for systems of hyperbolic conservation laws”, Dokl. Math., 72:1 (2005), 619–623
[6] P. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl
[7] V.V. Ostapenko, “O monotonnosti balansno-charakteristicheskoj skhemy”, Matem. Model., 21:7 (2009), 29–42 | Zbl
[8] V.V. Ostapenko, “On the strong monotonicity of the CABARET scheme”, Comp. Math. and Math. Phys., 52:3 (2012), 387–399 | DOI | MR | Zbl
[9] V.M. Goloviznin, A.A. Kanaev, “The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations”, Comp. Math. and Math. Phys., 51:5 (2011), 824–839 | DOI | MR | Zbl
[10] V.M. Goloviznin, M.A. Zaitsev, S.A. Karabasov, I.A. Korotkin, Novye algoritmy vychislitelnoj gidrodinamiki dlia mnogoprotsessornykh vychislitelnykh kompleksov, Izdatelstvo Moskovskogo universiteta, M., 2013, 480 pp.
[11] S.A. Karabasov, V.M Goloviznin, “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA J., 45:12 (2007), 2861–2871 | DOI
[12] S.A. Karabasov, P.S. Berloff, V.M. Goloviznin, “Cabaret in the ocean gyres”, Ocean Modelling, 30:2 (2009), 155–168 | DOI
[13] V.M. Goloviznin, V.A. Isakov, “Balance-characteristic scheme as applied to the shallow water equations over a rough bottom”, Comp. Math. and Math. Phys., 57:7 (2017), 1140–1157 | DOI | MR | Zbl
[14] O.A. Kovyrkina, V.V. Ostapenko, “On monotonicity of two-layer in time CABARET scheme”, Math. Model. Comp. Simul., 5:2 (2013), 180–189 | DOI | MR
[15] O.A. Kovyrkina, V.V. Ostapenko, “Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field”, Com. Math. and Math. Phys., 56:5 (2016), 783–801 | DOI | DOI | MR | Zbl
[16] O.A. Kovyrkina, V.V. Ostapenko, “On the monotonicity of the CABARET scheme in the multidimensional case”, Dokl. Math., 91:3 (2015), 323–328 | DOI | DOI | MR | Zbl
[17] N.A. Zuzina, V.V. Ostapenko, “On the monotonicity of the CABARET scheme approximating a scalar conservation law with a convex flux”, Dokl. Math., 93:1 (2016), 69–73 | DOI | DOI | MR | Zbl
[18] N.A. Zuzina, V.V. Ostapenko, “Monotone approximation of a scalar conservation law based on the CABARET scheme in the case of a sign-changing characteristic field”, Dokl. Math., 94:2 (2016), 538–542 | DOI | MR | Zbl
[19] S.K. Godunov, “Raznostnyj metod chislennogo rascheta razryvnych reshenij uravnenij gidrodinamiki”, Matem. Sbornik, 47:3 (1959), 271–306 | Zbl