Simulation of aerodynamics of a moving body prescribed by immersed boundaries on dynamically adaptative unstructured mesh
Matematičeskoe modelirovanie, Tome 30 (2018) no. 5, pp. 57-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the development of integrated technology for numerical simulation of aerodynamics of moving bodies prescribed by the immersed boundaries method on unstructured meshes. The dynamic mesh adaptation is used to improve the accuracy. The mesh adaptation method in use is built on the base of nodes-redistribution techniques. Its implementation implies the solution of additional differential equation governing the mesh movement. The method allows to keep a topology of the initial mesh and does not increase significantly the computational costs. The technology is developed for 2D formulations and verified on model problems.
Keywords: numerical simulation, adapted mesh, unstructured mesh.
@article{MM_2018_30_5_a4,
     author = {I. V. Abalakin and P. A. Bahvalov and O. A. Doronina and N. S. Zhdanova and T. K. Kozubskaya},
     title = {Simulation of aerodynamics of a moving body prescribed by immersed boundaries on dynamically adaptative unstructured mesh},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {57--75},
     publisher = {mathdoc},
     volume = {30},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_5_a4/}
}
TY  - JOUR
AU  - I. V. Abalakin
AU  - P. A. Bahvalov
AU  - O. A. Doronina
AU  - N. S. Zhdanova
AU  - T. K. Kozubskaya
TI  - Simulation of aerodynamics of a moving body prescribed by immersed boundaries on dynamically adaptative unstructured mesh
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 57
EP  - 75
VL  - 30
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_5_a4/
LA  - ru
ID  - MM_2018_30_5_a4
ER  - 
%0 Journal Article
%A I. V. Abalakin
%A P. A. Bahvalov
%A O. A. Doronina
%A N. S. Zhdanova
%A T. K. Kozubskaya
%T Simulation of aerodynamics of a moving body prescribed by immersed boundaries on dynamically adaptative unstructured mesh
%J Matematičeskoe modelirovanie
%D 2018
%P 57-75
%V 30
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_5_a4/
%G ru
%F MM_2018_30_5_a4
I. V. Abalakin; P. A. Bahvalov; O. A. Doronina; N. S. Zhdanova; T. K. Kozubskaya. Simulation of aerodynamics of a moving body prescribed by immersed boundaries on dynamically adaptative unstructured mesh. Matematičeskoe modelirovanie, Tome 30 (2018) no. 5, pp. 57-75. http://geodesic.mathdoc.fr/item/MM_2018_30_5_a4/

[1] R. Mittal, G. Iaccarino, “Immersed boundary Methods”, Annu. Rev. Fluid Mech., 37 (2005), 239–261 | DOI | MR | Zbl

[2] O. Boiron, G. Chiavassa, R. Donat, “A high-resolution penalization method for large Mach number flows in the presence of obstacles”, Comput. and Fluids, 38:3 (2009), 703–714 | DOI | MR | Zbl

[3] E. Brown-Dymkoski, N. Kasimov, O.V. Vasilyev, “A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows”, J. Comput. Phys., 262 (2014), 344–357 | DOI | MR | Zbl

[4] Joe F. Thompson, Bharat K. Soni, Nigel P. Weatherill (eds.), Handbook of grid generation, CRC press, Boca Raton, 1998, 1136 pp. | MR

[5] V.D. Liseikin, Grid generation methods, 2nd Edition, Springer, Heidelberg, 2010, 390 pp. | MR | Zbl

[6] W. Huang, R. D. Russell, Adaptive Moving Mesh Methods, Applied Mathematical Sciences, 174, Springer, New-York, 2011, 434 pp. | DOI | MR | Zbl

[7] S. Adjerid, J.E. Flaherty, P.K. Moore, Y. J. Wang, “High-order adaptive methods for parabolic systems”, Physica D: Nonlinear Phenomena, 60:1–4 (1992), 94–111 | DOI | MR | Zbl

[8] K. Eriksson, C. Johnson, “Adaptive finite element methods for parabolic problems I: A linear model problem”, SIAM J. on Numer. Anal., 28:1 (1991), 43–77 | DOI | MR | Zbl

[9] I. Babuska, M. Suri, “The p-and hp versions of the finite element method, an overview”, Comput. Methods Appl. Mech. Engrg., 80:1–4 (1990), 5–26 | DOI | MR | Zbl

[10] T.J. Baker, “Mesh adaptation strategies for problems in fluid dynamics”, Finite Elements in Analysis and Design Adaptive Meshing, 25:3–4 (1997), 243–273 | DOI | MR | Zbl

[11] P.V. Breslavskii, V. I. Mazhukin, “Dynamic adaptation method in gasdynamic simulations with nonlinear heat conduction”, Comput. Math. and Math. Phys., 48:11 (2008), 2102–2115 | DOI | MR

[12] N.N. Yanenko, E.A. Kroshko, V.V. Liseikin, V.M. Fomin, V.P. Shapeev, Yu.A. Shitov, “Methods for the construction of moving grids for problems of fluid dynamics with big deformations”, Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics (June 28–July 2, 1976, Twente University, Enschede), Springer, 454–459 | MR

[13] A.M. Winslow, Adaptive-mesh zoning by the equipotential method, Technical Report UCID-19062, Lawrence Livermore National Laboratory (CA, USA), 1981

[14] J.U. Brackbill, J. S. Saltzman, “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46:3 (1982), 342–368 | DOI | MR | Zbl

[15] A.S. Dvinsky, “Adaptive grid generation from harmonic maps on Riemannian manifolds”, J. Comput. Phys., 95:2 (1991), 450–476 | DOI | MR | Zbl

[16] P.M. Knupp, “Jacobian-weighted elliptic grid generation”, SIAM J. Sci. Comput., 17:6 (1996), 1475–1490 | DOI | MR | Zbl

[17] P. M. Knupp, N. Robidoux, “A framework for variational grid generation: conditioning the Jacobian matrix with matrix norms”, SIAM J. Sci. Comput., 21:6 (2000), 2029–2047 | DOI | MR | Zbl

[18] W. Huang, “Variational mesh adaptation: isotropy and equidistribution”, J. Comput. Phys., 174:2 (2001), 903–924 | DOI | MR | Zbl

[19] W. Huang, L. Kamenski, R. D. Russell, “A comparative numerical study of meshing functionals for variational mesh adaptation”, J. Math. Study, 48:2 (2015), 168–186 | DOI | MR | Zbl

[20] W. Huang, Y. Ren, R. D. Russell, “Moving mesh partial differential equations (MMPDES) based on the equidistribution principle”, SIAM J. on Numer. Anal., 31:3 (1994), 709–730 | DOI | MR | Zbl

[21] W. Huang, R. D. Russell, “Moving mesh strategy based on a gradient for equation for two-dimensional problems”, SIAM J. Sci. Comput., 20:3 (1998), 998–1015 | DOI | MR

[22] W. Huang, R. D. Russell, “A high dimensional moving mesh strategy”, Appl. Numer. Math., 26:1–2 (1998), 63–76 | DOI | MR | Zbl

[23] W. Huang, “Practical aspects of formulation and solution of moving mesh partial differential equations”, J. Comput. Phys., 171:2 (2001), 753–775 | DOI | MR | Zbl

[24] C.J. Budd, W. Huang, R. D. Russell, “Adaptivity with moving grids”, Acta Numerica, 18 (2009), 111–241 | DOI | MR | Zbl

[25] W. Cao, W. Huang, R. D. Russell, “A study of monitor functions for two-dimensional adaptive mesh generation”, SIAM J. Sci. Comput., 20:6 (1999), 1978–1994 | DOI | MR | Zbl

[26] H. Jasak, Ž. Tuković, “Automatic mesh motion for the unstructured finite volume method”, Transactions of FAMENA, 30 (2006), 1–20

[27] Ž. Tuković, H. Jasak, “A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow”, Comput. Fluids, 55 (2012), 70–84 | DOI | MR | Zbl

[28] H. Jasak, Ž. Tuković, “Dynamic mesh handling in OpenFOAM applied to fluid-structure interaction simulations”, Proceedings of the V European Conference Computational Fluid Dynamics (Lisbon, Portugal, June, 2010), 14–17

[29] I.V. Abalakin, N.S. Zhdanova, T. K. Kozubskaya, “Immersed Boundary Method Implemented for the Simulation of an External Flow on Unstructured Meshes”, Math. Models Comput. Simul., 8:3 (2016), 219–230 | DOI | MR

[30] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Meth. Fluids, 81:6 (2016), 331–356 | DOI | MR

[31] S.W. Hirt, A.A. Amsden, J.L. Cook, “An arbitrary Lagrangian-Eulerian computing method for all flow speeds”, J. Comput. Phys., 14:3 (1974), 227–253 | DOI | MR | Zbl

[32] V.M. Goloviznin, A.A. Samarskii, A.P. Favorskii, “A variational principle for obtaining magnetohydrodynamic equations in mixed eulerian-lagrangian variables”, U.S.S.R Comput. Maths. Math. Phys., 21:2 (1981), 153–166 | DOI | MR | Zbl | Zbl

[33] P.K. Kundu, I.M. Cohen, D.R. Dowling, Fluid mechanics, Sixth Edition, Elsevier, Amsterdam, 2016, 928 pp. | Zbl

[34] T.J. Barth, “A 3-D Upwind Euler Solver for Unstructured Meshes”, 10th AIAA Computational Fluid Dynamics Conference (24–26 June 1991, Honolulu, HI), AIAA 91-1548

[35] R.D. Henderson, “Nonlinear dynamics and pattern formation in turbulent wake transition”, J. Fluid Mech., 352 (1997), 65–112 | DOI | MR | Zbl