Unsteady high order accuracy DG method for turbulent flow modeling
Matematičeskoe modelirovanie, Tome 30 (2018) no. 5, pp. 37-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides a brief description of TsAGI code based on the high order of accuracy Discontinuous Galerkin method. Reconstruction of the functions is carried out for the conservative variables. Gradients of variables are calculated using the method of Bassi–Rebay 2. For integration, Gauss quadrature rules are used. Coordinate transformations are done by serendipity elements. In calculations with schemes of order higher than second, curvature of the mesh lines is taken into account. In the paper, a comparison with finite volume methods is performed, including WENO method with linear weights and a single quadrature point on a cell side. The classical tests are used such as subsonic flow around a circular cylinder in an ideal gas, diagonal convection of two-dimensional isentropic vortex, and decay of the Taylor–Green vortex.
Keywords: Discontinuous Galerkin method (DG), Finite Volume method (FV), high order of accuracy, Taylor–Green vortex.
@article{MM_2018_30_5_a3,
     author = {S. M. Bosnyakov and S. V. Mikhaylov and V. Yu. Podaruev and A. I. Troshin},
     title = {Unsteady high order accuracy {DG} method for turbulent flow modeling},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {37--56},
     publisher = {mathdoc},
     volume = {30},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_5_a3/}
}
TY  - JOUR
AU  - S. M. Bosnyakov
AU  - S. V. Mikhaylov
AU  - V. Yu. Podaruev
AU  - A. I. Troshin
TI  - Unsteady high order accuracy DG method for turbulent flow modeling
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 37
EP  - 56
VL  - 30
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_5_a3/
LA  - ru
ID  - MM_2018_30_5_a3
ER  - 
%0 Journal Article
%A S. M. Bosnyakov
%A S. V. Mikhaylov
%A V. Yu. Podaruev
%A A. I. Troshin
%T Unsteady high order accuracy DG method for turbulent flow modeling
%J Matematičeskoe modelirovanie
%D 2018
%P 37-56
%V 30
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_5_a3/
%G ru
%F MM_2018_30_5_a3
S. M. Bosnyakov; S. V. Mikhaylov; V. Yu. Podaruev; A. I. Troshin. Unsteady high order accuracy DG method for turbulent flow modeling. Matematičeskoe modelirovanie, Tome 30 (2018) no. 5, pp. 37-56. http://geodesic.mathdoc.fr/item/MM_2018_30_5_a3/

[1] N. Kroll, Ch. Hirsch, F. Bassi, C. Johnston, K. Hillewaert (eds.), IDIHOM: Industrialization of high-order methods — A top-down approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 128, Springer Intern. Publishing, 2015 | DOI | MR | Zbl

[2] C.-W. Shu, High Order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD, Tech. rep., No 11, NASA Langley Research Center, Hampton, Virginia, 2001, 17 pp. | MR

[3] X. Nogueira, L. Cueto-Felgueroso, I. Colominas, H. Gomez, F. Navarrina, M. Casteleiro, “On the accuracy of finite volume and discontinuous Galerkin discretizations for compressible flow on unstructured grids”, Int. J. for Numerical Methods in Engineering, 78:13 (2009), 1553–1584 | DOI | MR | Zbl

[4] Rui Zhang, Mengping Zhang, Chi Wang Shu, “On the order of accuracy and numerical performance of two classes of finite volume WENO schemes”, Communications in Computational Physics, 9:3 (2011), 807–827 | DOI | MR | Zbl

[5] D.A. Liubimov, Analiz turbulentnykh strui i otryvnykh techenii v elementakh TRD kombinirovannymi RANS/LES metodami vysokogo razresheniia, Dissertatsiia na soiskanie uchenoi stepeni doktora fiz.-mat. naik, TsIAM, M., 2014, 289 pp.

[6] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock capturing schemes”, J. of Computational Physics, 77:2 (1988), 439–471 | DOI | MR | Zbl

[7] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes. II”, J. of Comp. Physics, 83:1 (1989), 32–78 | DOI | MR | Zbl

[8] Dinshaw S. Balsara, C.-W. Shu, “Monotonicity preserving weighted essentially nonoscillatory schemes with increasingly high order of accuracy”, J. of Comp. Phys., 160:2 (2000), 405–452 | DOI | MR | Zbl

[9] V. Titarev, E. Toro, “Finite-volume WENO schemes for three-dimensional conservation laws”, J. of Comp. Physics, 201:1 (2004), 238–260 | DOI | MR | Zbl

[10] F. Bassi, S. Rebay, “A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations”, J. of Comp. Phys., 131:2 (1997), 267–279 | DOI | MR | Zbl

[11] B. Cockburn, C.-W. Shu, “The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws”, J. of Comp. Phys., 141:2 (1998), 199–224 | DOI | MR | Zbl

[12] A. Volkov, I. Bosniakov, V. Podaruev, “Optimizatsiia algoritmov rascheta Gaussovykh kvadratur”, IDIHOM, M., 2011, 19

[13] Philip L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes”, J. of Comp. Phys., 43:2 (1981), 357–372 | DOI | MR

[14] D.N. Arnold, G. Awanou, “The Serendipity Family of Finite Elements”, Foundations of Computational Mathematics, 11:3 (2011), 337–344 | DOI | MR | Zbl

[15] F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, P. Tesini, “On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations”, J. of Comp. Phys., 231:1 (2012), 45–65 | DOI | MR | Zbl

[16] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini, “A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows”, Turbomachinery - Fluid Dynamics and Thermodynamics, European Conference (Antwerpen, 1997), 99–108

[17] S. Gottlieb, C.-W. Shu, E. Tadmor, “Strong Stability-Preserving High-Order Time Discretization Methods”, SIAM Review, 43:1 (2001), 89–112 | DOI | MR | Zbl

[18] S. Mikhailov, Programma, realizuiushchaia zonnyi podkhod, dlya rascheta nestatsionarnogo obtekaniia viazkim potokom turbulentnogo gaza slozhnykh aerodinamicheskikh form, vkliuchaia krylo s mekhanizatsiei (ZEUS), Reestr programm dlya EVM. Svid. ob ofitsialnoi registratsii programmy dlya EVM No 2013610172 ot 12.11.2012

[19] S. Bosniakov, V. Vlasenko, M. Engulatova, N. Zlenko, S. Matiash, S. Mikhailov, Programmnyi, kompleks dlya sozdaniia geometrii LA, sozdaniia mnogoblochnoi 3-khmernoi raschetnoi setki, polucheniia polei techeniia pri pomoshchi resheniia sistemy uravnenii Eilera i sistemy uravnenii N-S, osrednennykh po vremeni, obrabotka rezultatov rascheta (EWT), Reestr programm dlya EVM. Svidetelstvo ob ofitsialnoi registratsii programmy dlya EVM No 2008610227 ot 9 ianvaria 2008

[20] S. Mikhailov, “Obiektno-orientirovannyi podkhod k sozdaniiu effectivnykh programm, realizuiushchiie parallelnye algoritmy rascheta”, Trudy TsAGI, 2671, 2007, 86–108

[21] V. Vlasenko, “O matematicheskom podkhode i printsipakh postroeniia chislennykh metodologii dlia Paketa Prikladnykh Programm EWT-TsAGI”, Trudy TsAGI, 2671, 2007, 20–85

[22] V. Vlasenko, E. Kazhan, E. Matiash, S. Mikhailov, A. Troshin, “Chislennaia realizatsiia neiavnoi skhemy i razlichnykh modelei turbulentnosti v raschetnom module ZEUS”, Trudy TsAGI, 2735, 2015, 5–49

[23] S. Mikhailov, A. Savelev, “Sravnenie TVD i WENO skhem na primere zadach o perenose volnovogo paketa ioc hislennoi diffuzii vikhria”, Matem. modelirovanie, 23:11 (2011), 99–110 | Zbl

[24] S. Mikhailov, A. Savelev, D. Chan, N. Nguen, “Primenenie skhemy WENO v ramkakh arkhitektury ZEUS”, Trudy TsAGI, 2735, 2015, 114–138

[25] Bram Van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. of Comp. Physics, 32:1 (1979), 101–136 | DOI | Zbl

[26] W. van Rees, A. Leonard, D. Pullin, P. Koumoutsakos, “A comparison of vortex and pseudospectral methods for the simulation of periodic vortical flows at high Reynolds number”, J. of Comp. Phys., 230 (2011), 2794–2805 | DOI | MR | Zbl