Computation of aerodynamic and acoustic characteristics of NACA0012 airfoil using zonal RANS-IDDES approach
Matematičeskoe modelirovanie, Tome 30 (2018) no. 5, pp. 19-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Results of computations of aerodynamic and acoustic characteristics of the NACA0012 airfoil with a blunt trailing edge in the subsonic compressible flow at zero angle of attack are presented. The computations are performed with the use of a modified scheme MP5 proposed in the present work. For turbulence representation, a zonal RANS-IDDES approach combined with a volume generator of synthetic turbulence for creating turbulent content at the RANS-IDDES interface is used. A series of model problems are considered, the solutions of which allow to tune parameters of the proposed numerical scheme and to solve some methodological issues related to post-processing of the results of simulations.
Keywords: profile, aerodynamics, acoustics, finite-difference scheme, methods for turbulence modeling.
@article{MM_2018_30_5_a2,
     author = {V. A. Shorstov and V. E. Makarov},
     title = {Computation of aerodynamic and acoustic characteristics of {NACA0012} airfoil using zonal {RANS-IDDES} approach},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--36},
     publisher = {mathdoc},
     volume = {30},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_5_a2/}
}
TY  - JOUR
AU  - V. A. Shorstov
AU  - V. E. Makarov
TI  - Computation of aerodynamic and acoustic characteristics of NACA0012 airfoil using zonal RANS-IDDES approach
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 19
EP  - 36
VL  - 30
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_5_a2/
LA  - ru
ID  - MM_2018_30_5_a2
ER  - 
%0 Journal Article
%A V. A. Shorstov
%A V. E. Makarov
%T Computation of aerodynamic and acoustic characteristics of NACA0012 airfoil using zonal RANS-IDDES approach
%J Matematičeskoe modelirovanie
%D 2018
%P 19-36
%V 30
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_5_a2/
%G ru
%F MM_2018_30_5_a2
V. A. Shorstov; V. E. Makarov. Computation of aerodynamic and acoustic characteristics of NACA0012 airfoil using zonal RANS-IDDES approach. Matematičeskoe modelirovanie, Tome 30 (2018) no. 5, pp. 19-36. http://geodesic.mathdoc.fr/item/MM_2018_30_5_a2/

[1] A. Suresh, H.T. Huynh, “Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping”, J. of Comput. Phys., 136 (1997), 83–99 | DOI | MR | Zbl

[2] A. Suresh, H.T. Huynh, “Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping”, NASA Technical Memorandum, 107367, AIAA-97-2037

[3] A.K. Travin, M.L. Shur, Ph.R. Spalart, M.Kh. Strelets, “Improvement of Delayed Detached-Eddy Simulation for LES with Wall Modelling”, European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006

[4] M. Shur, M. Strelets, A. Travin, A. Probst, S. Probst, D. Schwamborn, S. Deck, A. Skillen, J. Holgate, A. Revell, “Improved Embedded Approaches”, Go4Hybrid: Grey Area Mitigation for Hybrid, RANS-LES Methods, Notes on Numerical Fluid Mechanics and Multidisciplinary, 134, eds. C. Mockett et al., Springer International Publishing AG, 2018 | DOI

[5] David P. Lockard, A Comparison of Ffowcs Williams-Hawkings Solvers for Airframe Noise Applications, AIAA 2002-2580

[6] J.H. Seo, K.W. Chang, Y. J. Moon, “Aerodynamic Noise Prediction for Long-Span Bodies”, 12th AIAA/CEAS Aeroacoustics Conference (8–10 May 2006, Cambridge, Massachusetts), AIAA 2006-2573

[7] Th. F. Brooks, D. S. Pope, M. A. Marcolini, Airfoil Self-Noise and Prediction, NASA Reference Publication 1218, July 1989

[8] A. Herrig, W. Wurz, E. Kramer, S. Wagner, “New CPV-results of NACA0012 trailing-edge noise”, International Conference on Methods of Aerophysical Research, ICMAR 2008

[9] A.G. Sagrado, Boundary Layer and Trailing Edge Noise Sources, Ph.D. Thesis, Cambridge University, Cambridge, England, 2007

[10] O. Verhoeven, Trailing Edge Noise Simulations using IDDES in OpenFOAM, Master of Science Thesis, Faculty of Aerospace Engineering Delft University of Technology, 2011

[11] M. Kamruzzaman, Th. Lutz, W. Wurz, W.Z. Shen, W.J. Zhu, M.O.L. Hansen, F. Bertagnolio, H.A. Madsen, “Validations and improvements of airfoil trailing-edge noise prediction models using detailed experimental data”, WIND ENERGY, 2012, no. 15, 45–61 | DOI

[12] Y. Lin, M. Savill, N.R. Vadlamani, R. Jefferson-Loveday, “Wall-Resolved Large Eddy Simulation over NACA0012 Airfoil”, International Journal of Aerospace Sciences, 2:4 (2013), 149–162

[13] M. Herr, M. Kamruzzaman, “Benchmarking of Trailing-Edge Noise Computations-Outcome of the BANC-II Workshop”, 19th AIAA/CEAS Aeroacoustics Conference (27–29 May 2013, Berlin, Germany)

[14] M. Herr, R. Ewert, C. Rautmann, M. Kamruzzaman, D. Bekiropoulos, R. Arina, A. Iob, P. Batten, S. Chakravarthy, F. Bertagnolio, “Broadband Trailing-Edge Noise Predictions-Overview of BANC-III Results”, 21st AIAA/CEAS Aeroacoustics Conference, AIAA AVIATION Forum

[15] Q. Li, N. Peake, M. Savill, “Large Eddy Simulations for Fan-OGV Broadband Noise Prediction”, 14th AIAA/CEAS Aeroacoustics Conference (5–7 May, 2008, Vancouver, Canada), AIAA 2008-2843

[16] Q. Li, N. Peake, M. Savill, “Grid-Refined LES Predictions for Fan-OGV Broadband Noise”, 15th AIAA/CEAS Aeroacoustics Conference (11–13 May, 2009, Miami, Florida, Canada), AIAA 2009-3147

[17] G. Comte-Bellot, S. Corrsin, “Simple Eulerian time of full- and narrow-band velocity signals in grid-generated, “isotropic” turbulence”, Journal of Fluid Mechanics, 48 (1971), 273–337 | DOI

[18] M.S. Gritskevich et al., “Development of DDES and IDDES formulations for the $k-\omega$ shear stress transport model”, Flow Turbulence and Combustion, 88:3 (2012), 431–449 | DOI | Zbl

[19] P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.Kh. Strelets, A. Travin, “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theor. Comput. Fluid Dyn., 20 (2006), 181–195 | DOI | Zbl

[20] P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper 1992-0439