Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_5_a1, author = {V. V. Ostapenko}, title = {On strong monotonicity of two-layer in time {CABARET} scheme}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {5--18}, publisher = {mathdoc}, volume = {30}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_5_a1/} }
V. V. Ostapenko. On strong monotonicity of two-layer in time CABARET scheme. Matematičeskoe modelirovanie, Tome 30 (2018) no. 5, pp. 5-18. http://geodesic.mathdoc.fr/item/MM_2018_30_5_a1/
[1] Iserles A., “Generalized leapfrog methods”, IMA J. of Num. Anal., 6:3 (1986), 381–392 | DOI | MR | Zbl
[2] Goloviznin V. M., Samarskii A. A., “Raznostnaia approksimatsiia konvektivnogo perenosa s prostranstvennym rasshchepleniem vremennoi proizvodnoi”, Mat. mod., 10:1 (1998), 86–100
[3] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy “Kabare””, Matem. modelirovanie, 10:1 (1998), 101–116 | Zbl
[4] Rozhdestvenskii B. L., Ianenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978
[5] Kulikovskii A. G., Pogorelov N. V., Semenov F. Iu., Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001
[6] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniia uravnenii gazovoi dinamiki”, Dokl. AN, 72:1 (2005), 619–623
[7] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl
[8] Ostapenko V. V., “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matem. modelirovanie, 21:7 (2009), 29–42 | Zbl
[9] Karabasov S. A., Goloviznin V. M., “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA J., 45:12 (2007), 2861–2871 | DOI
[10] Karabasov S. A., Berloff P. S., Goloviznin V. M., “Cabaret in the ocean gyres”, Ocean Modelling, 30:2 (2009), 155–168 | DOI
[11] Goloviznin V. M., Zaitsev M. A., Karabasov S. A., Korotkin I. A., Novye algoritmy vychislitelnoi gidrodinamiki dlia mnogoprotsessornykh vychislitelnykh kompleksov, Izdatelstvo Moskovskogo universiteta, M., 2013
[12] Kovyrkina O. A., Ostapenko V. V., “O monotonnosti dvukhsloinoi po vremeni skhemy kabare”, Matem. modelirovanie, 24:9 (2012), 97–112
[13] Kovyrkina O. A., Ostapenko V. V., “On the Monotonicity of the CABARET Scheme in the Multidimensional Case”, Dokl. Math., 462:4 (2015), 385–390 | DOI | Zbl
[14] Kovyrkina O. A., Ostapenko V. V., “Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field”, Zh. Vychisl. Mat. Mat. Fiz., 56:5 (2016), 796–815 | DOI | Zbl
[15] Zyuzina N. A., Ostapenko V. V., “On the Monotonicity of the CABARET Scheme Approximating a Scalar Conservation Law with a Convex Flux”, Dokl. Math., 466:5 (2016), 513–517 | Zbl
[16] Zyuzina N. A., Ostapenko V. V., “Monotone Approximation of a Scalar Conservation Law Based on the CABARET Scheme in the Case of a Sign-Changing Characteristic Field”, Dokl. Math., 470:4 (2016), 375–379 | DOI | Zbl
[17] Godunov S. K., “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Mat. Sb. (N.S.), 47(89):3 (1959), 271–306 | Zbl
[18] Ostapenko V. V., “On the monotonicity of difference schemes”, Sibirsk. Mat. Zh., 39:5 (1998), 1111–1126 | Zbl
[19] Ostapenko V. V., “On the strong monotonicity of three-point difference schemes”, Sibirsk. Mat. Zh., 39:6 (1998), 1357–1367 | Zbl
[20] Ostapenko V. V., “On the strong monotonicity of nonlinear difference schemes”, Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998), 1170–1185 | Zbl
[21] Liu X., Tadmor E., “Third order nonoscillatory central scheme for hyperbolic conservation laws”, Numer. Math., 79 (1998), 397–425 | DOI | MR | Zbl
[22] Ostapenko V. V., “On the strong monotonicity of the CABARET scheme”, Zh. Vychisl. Mat. Mat. Fiz., 52:3 (2012), 447–460 | Zbl