Influence of viscosity on the development of magnetorotational instability in a ring channel
Matematičeskoe modelirovanie, Tome 30 (2018) no. 4, pp. 108-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the investigation of development of magnetorotational instability (MRI) in a laboratory setup using computational experiments is continued. Instability of the rotational flow of liquid sodium in the annular channel is studied. The simulation of such flow with more realistic values of the Reynolds number for the purpose of determining the dependence of the parameters of the MRI from the flow coefficient of viscosity is carried out.
Keywords: magneto-hydrodynamics, simulation of MHD-instabilities in plasma, software toolkit.
@article{MM_2018_30_4_a7,
     author = {V. Chechetkin and K. Sychugov and A. Lugovsky and A. Pastuhov},
     title = {Influence of viscosity on the development of magnetorotational instability in a ring channel},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {108--120},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_4_a7/}
}
TY  - JOUR
AU  - V. Chechetkin
AU  - K. Sychugov
AU  - A. Lugovsky
AU  - A. Pastuhov
TI  - Influence of viscosity on the development of magnetorotational instability in a ring channel
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 108
EP  - 120
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_4_a7/
LA  - ru
ID  - MM_2018_30_4_a7
ER  - 
%0 Journal Article
%A V. Chechetkin
%A K. Sychugov
%A A. Lugovsky
%A A. Pastuhov
%T Influence of viscosity on the development of magnetorotational instability in a ring channel
%J Matematičeskoe modelirovanie
%D 2018
%P 108-120
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_4_a7/
%G ru
%F MM_2018_30_4_a7
V. Chechetkin; K. Sychugov; A. Lugovsky; A. Pastuhov. Influence of viscosity on the development of magnetorotational instability in a ring channel. Matematičeskoe modelirovanie, Tome 30 (2018) no. 4, pp. 108-120. http://geodesic.mathdoc.fr/item/MM_2018_30_4_a7/

[1] E.P. Velikhov, “Stability of an Ideally Conducting Liquid Flowing Between Cylinders Rotating in a Magnetic Field”, Soviet Physics JETP, 36 (1959), 995–998

[2] S.A. Balbus, J. F. Hawley, “A Powerful Local Shear Instability in Weakly Magnetized Disks: I. Linear Analysis”, Astrophysical Journal, 376 (1991), 214–222 | DOI

[3] E.P. Velikhov, K.R. Sychugov, V.M. Chechetkin, A.Yu. Lugovskii, A.V. Koldoba, “Magnetorotational Instability in the Accreting Envelope of a Protostar and the Formation of the Large-Scale Magnetic Field”, Astronomy Rep., 56 (2012), 84–95 | DOI

[4] V.S. Fedotovskii, N.I. Loginov, L.V. Terenik i dr., “Vrashchenie zhidkogo natriia v koltsevoi kamere pri elektromagnitnom vozdeistvii”, Sb. mat. III Mezhdunarodnogo seminara po magnitorotatsionnoi neustoichivosti v astrofizike i fizike Zemli, M., 2006, 48–57

[5] H. Ji, J. Goodman, A. Kageyama, “Magnetorotational instability in a rotating liquid metal annulus”, Mon. Not. R. Astron. Soc., 325 (2001), L1–L5 | DOI

[6] R. Hollenbach, G. Rudiger, “New type of magnetorotational instability in cylindrical Taylor-Couette flow”, Phys. Rev. Lett., 95 (2005), 124501, 4 pp. | DOI

[7] K.R. Sychugov, A.Yu. Lugovsky, I.S. Muhin, A.N. Pastuhov, V.M. Chechetkin, “Numerical Model for the Development of Magnetorotational Instability in an Annular Channel”, Mathematical Models and Computer Simulations, 7:6 (2015), 551–569 | DOI | MR

[8] F.H. Harlow, J.E. Welch, “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface”, Phys. Fluids, 8:12 (1965), 2182–2189 | DOI | MR

[9] Jian-Guo Liu, Wei-Cheng Wang, “An Energy-Preserving MAC-Yee Scheme for the Incompressible MHD Equation”, J. Comput. Phys., 174 (2001), 12–37 | DOI | MR

[10] R. Peyret, T.D. Taylor, Computational Methods for Fluid Flow (Scientific Computation), Springer, Berlin, 1985 | MR

[11] C. Fletcher, Computational Techniques for Fluid Dynamics, v. 2, Springer, Berlin, 1991 | MR