Numeric modeling of static electric field effect on nematic liquid crystal director orientation
Matematičeskoe modelirovanie, Tome 30 (2018) no. 4, pp. 97-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-dimensional model of Frederiks effect has been used for the investigation of the static electric field effect on nematic liquid crystal director orientation in the side–electrode cell. The solutions have been obtained by the standard finite–difference methods. The programmes for numerical solution of two-dimensional parabolic partial differential equation have been developed both in FORTRAN and C/C++. Frederiks transition threshold for the central part of the cell, as well as dependencies of the distribution of the director orientation on the high electric field have been obtained. The results of the calculation have been compared to the experiment.
Keywords: nematic liquid crystal, two-dimensional model of the Fredericks effect, director, electric field, numerical solution, finite-difference methods.
@article{MM_2018_30_4_a6,
     author = {A. S. Ayriyan and E. A. Ayrjan and A. A. Egorov and I. A. Maslyanitsyn and V. D. Shigorin},
     title = {Numeric modeling of static electric field effect on nematic liquid crystal director orientation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--107},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_4_a6/}
}
TY  - JOUR
AU  - A. S. Ayriyan
AU  - E. A. Ayrjan
AU  - A. A. Egorov
AU  - I. A. Maslyanitsyn
AU  - V. D. Shigorin
TI  - Numeric modeling of static electric field effect on nematic liquid crystal director orientation
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 97
EP  - 107
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_4_a6/
LA  - ru
ID  - MM_2018_30_4_a6
ER  - 
%0 Journal Article
%A A. S. Ayriyan
%A E. A. Ayrjan
%A A. A. Egorov
%A I. A. Maslyanitsyn
%A V. D. Shigorin
%T Numeric modeling of static electric field effect on nematic liquid crystal director orientation
%J Matematičeskoe modelirovanie
%D 2018
%P 97-107
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_4_a6/
%G ru
%F MM_2018_30_4_a6
A. S. Ayriyan; E. A. Ayrjan; A. A. Egorov; I. A. Maslyanitsyn; V. D. Shigorin. Numeric modeling of static electric field effect on nematic liquid crystal director orientation. Matematičeskoe modelirovanie, Tome 30 (2018) no. 4, pp. 97-107. http://geodesic.mathdoc.fr/item/MM_2018_30_4_a6/

[1] Khoo I. C., Liquid Crystals, Second edition, Wiley Interscience, New York, 2007, 424 pp.

[2] Blinov L. M., Elektro- i magnitooptika zhidkikh kristallov, Nauka, M., 1978, 384 pp.

[3] de Gennes P., The Physics of Liquid Crystals, Clarendon, Oxford, 1974

[4] Chandrasekhar S., Liquid crystals, Cambridge Univ. Press, 1977

[5] Bloembergen N., Nonlinear Optics, Benjamin, New York, 1965 | MR

[6] Born M., Wolf E., Principles of Optics, Pergamon Press, London, 1959 | MR

[7] Li J., Wen C.-H., Gauza S., Lu R., Wu S.-T., “Refractive Indices of Liquid Crystals for Display Applications”, IEEE J. of display technology, 1:1 (2005), 51–61 | DOI

[8] Maker P. D., Terhune R. W., Nisenoff M., Savage C. M., “Effects of dispersion and focusing on the production of optical harmonics”, Phys. Rev. Let., 8:1 (1962), 21–23 | DOI

[9] Lonberg F., Fraden S., Hurd A. J., Meyer R. E., “Field-Induced Transient Periodic Structures in Nematic Liquid Crystals: The Twist-Freedericksz Transition”, Phys. Rev. Let., 52:21 (1984), 1903–1907 | DOI

[10] Srajer G., Fraden S., Meyer R. B., “Field-induced nonequilibrium periodic structures in nematic liquid crystals: Nonlinear study of the twist Frederiks transition”, Phys. Rev. A, 39:9 (1989), 4828–4835 | DOI

[11] Egorov A. A., Maslianitsyn I. A., Shigorin V. D., Airiian A. S., Airian E. A., “Issledovanie vliianiia impulsno-periodicheskogo elektricheskogo polia i lineinoi poliarizatsii lazernogo izlucheniia na svoistva NZhK-volnovoda”, Trudy V Mezhdunarodnoi konferentsii «Problemy matematicheskoi i teoreticheskoi fiziki i matematicheskoe modelirovanie» (Moskva, NIIaU MIFI, 5–7 aprelia 2016 g.), MIFI, M., 2016, 51–53

[12] Marinov Y. G., Hadjichristov G. B., Petrov A. G., Sridevi S., Hiremath U. S., Yelamaggad C. V., Prasad S. K., “Conoscopic evidence of the UV light-induced flexoelectric effect in homeotropic layers of nematic liquid crystal doped with azobenzene derivatives”, J. of Phys.: Conf. Ser., 253 (2010), 012060 | DOI

[13] Ayriyan A. S., Ayrjan E. A., Egorov A. A., Hadjichristov G. B., Marinov Y. G., Maslyanitsyn I. A., Petrov A. G., Pribis J., Popova L., Shigorin V. D., Strigazzi A., Torgova S. I., “Some Features of Second Harmonic Generation in the Nematic Liquid Crystal 5CB in the Pulsed Periodic Electric Field”, Physics of Wave Phenomena, 24:4 (2016), 259–267 | DOI

[14] Faetti S., Gatti M., Palleschi V., “Measurements of surface elastic torques in liquid crystals: a method to measure elastic constants and anchoring energies”, Rev. Phys. Appl., 21:7 (1986), 451–461 | DOI

[15] Bogi A., Faetti S., “Elastic, dielectric and optical constants of 4'-pentyl-4-cyanobiphenyl”, Liq. Cryst., 28:5 (2001), 729–739 | DOI

[16] Samarskii A. A., The Theory of Difference Schemes, Marcel Dekker Inc., New York, 2001, 788 pp. | MR

[17] Ayrjan E. A., Zhidkov E. P., Khoromsky B. N., “Fast relaxation method for solving the difference problem for the poisson equation on a sequence of grids”, Computer Physics Communications, 29:2 (1983), 125–130 | DOI