The approximation of experimental dependences describing the abrupt change of condition of object of research
Matematičeskoe modelirovanie, Tome 30 (2018) no. 4, pp. 73-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method for smooth approximation of experimental dependencies with sharp transitions is proposed. The technique is based on the introduced operator can switch from one function to another. This is a smooth differentiable operator similar to the well known transition operator if. The approximation involves two steps. In the first stage approximiert experimental dependences before and after the sharp transition. In the second stage the transition operator between two analytic functions defined in the first stage is use. Smooth function in the transition region contains two or three empirical constants. One of them specifies the location of the transition, the other transition speed, the third form of transition. The technique is demonstrated with respect to laws of resistance, current—voltage characteristics of the tunnel diode and to a rectangular function. It is shown that the deviation of analytical values from experimental data in the region of abrupt transitions lie within 5%.
Keywords: approximation, transition operator, laws of resistance, volt-ampere characteristic, rectangular pulse
Mots-clés : tunnel diode, RC chain.
@article{MM_2018_30_4_a4,
     author = {V. M. Markochev},
     title = {The approximation of experimental dependences describing the abrupt change of condition of object of research},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {73--83},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_4_a4/}
}
TY  - JOUR
AU  - V. M. Markochev
TI  - The approximation of experimental dependences describing the abrupt change of condition of object of research
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 73
EP  - 83
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_4_a4/
LA  - ru
ID  - MM_2018_30_4_a4
ER  - 
%0 Journal Article
%A V. M. Markochev
%T The approximation of experimental dependences describing the abrupt change of condition of object of research
%J Matematičeskoe modelirovanie
%D 2018
%P 73-83
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_4_a4/
%G ru
%F MM_2018_30_4_a4
V. M. Markochev. The approximation of experimental dependences describing the abrupt change of condition of object of research. Matematičeskoe modelirovanie, Tome 30 (2018) no. 4, pp. 73-83. http://geodesic.mathdoc.fr/item/MM_2018_30_4_a4/

[1] Efremov A. L., “Approksimatsiia zakona soprotivleniia vozdukha 1943 g.”, Elektronnyi nauchno-tekhn. zhurnal MGTU im. N.E. Baumana, 2013, no. 10, 269–284

[2] Kozlitin I. A., Omelyanov A. S., “Metod postroeniia gladkoi approksimatsii zakonov soprotivleniia”, Matematicheskoe modelirovanie, 28:10 (2016), 23–32

[3] Piganov M. N., Dmitriev V. O., Tyulevin S. V., Kochina A. V., “Analis i modelirovanie volt-ampernoi kharakteristiki tunnelnogo dioda”, Vestnik Samarskogo gosudarstvennogo universiteta, 38:7 (2012), 35–39

[4] Alyukov S. V., “Approksimatsiia stupenchatoi funktsii v zadachakh matematicheskogo modelirovaniia”, Matematicheskoe modelirovanie, 23:3 (2011), 75–88

[5] Trinh K. T., On the critical Reynolds number for transition from laminar to turbulent flow, Institute of Food Nutrition and Human Health, New Zealand, 2010, 39 pp.

[6] Delft D., Kes P., “The discovery of supepconductivity”, Physics Today, 63:9 (2010), 38–43 | DOI

[7] Kazantsev A. G., Markochev V. M., Sugirbekov B. A., “Otsenka pogreshnostei opredeleniia kriticheskoi temperatury khrupkosti metalla korpusa VVER-1000 s ispolzovaniem metoda Monte-Karlo”, Tiazholoe mashinostroenie, 2015, no. 10, 19–27

[8] Kazantsev A. G., Markochev V. M., Sugirbekov B. A., “Statistichskaia otsenka opredeleniia kriticheskoi temperatury khrupkosti metalla korpusa reaktora VVER-1000 po dannym ispytanii na udarnyi izgib”, Zavodskaia Laboratoriia. Diagnostika materialov, 2017, no. 3, 47–54

[9] Aleksandrova O. V., Markochev V. M., “Matematicheskoe opisanie diagramm deformirovaniya”, Zavodskaia laboratoriia. Diagnostika materialov, 2003, no. 4, 49–52

[10] Markochev V. M., Aleksandrova O. V., “Drobno-stepennaia funktsiia dlia opisaniia raspredeleniia veroyatnostei”, Zavodskaia laboratoriia. Diagnostika materialov, 2012, no. 11, 71–73

[11] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp.

[12] Judd K. L., Approximation methods, july 17, Hoover Institution, 2012

[13] Director C. W., Rohrer R. A., Introduction to systens theory, McGRAW-HILL BOOK COMPANY, NY., 1972 | MR

[14] Arnold V. I., Teoriia katastrof, Nauka, M., 1990, 128 pp.

[15] Thompson J. M. T., Instabilites and catastrophes in science and engineering, John Wiley Sons, NY., 1982 | MR

[16] Dodd R. K., Eilbeck J. C., Gibbon J. D., Morris H. C., Solitons and nonlinear wave equations, Academic Press, NY., 1982 | MR

[17] Scott A. C., “A nonlinear Klein-Gordon equation”, American Journal of Physics, 37:1 (1969), 52–61 | DOI

[18] Johnson N. L., Leone F. C., Statistics and experimental design in engineering and physical sciences, v. 1, John Wiley Sons, NY., 1977 | MR

[19] Markochev V. M., Programmirovanie funktsii, Elektronnoe izdanie, 2011, 5.3 Mb: Registratsionnoe svidetelstvo No 23585, nomer gosudarstvennoy regiztratsii 0321102506, FGUP NTTS «INFORMREGIZTR», 13.09.2011

[20] Markochev V. M., Van Khajzhun, “Poztroenie obedinennykh kriteriev prochnosti”, Inzhenernaia fisika, 2004, no. 3, 31–35