Model for investigation of charged particles localization in the presence of the external magnetic field
Matematičeskoe modelirovanie, Tome 30 (2018) no. 3, pp. 135-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a mathematical model for the study of the localization of the strongly coupled charged particles in an external magnetic field. Based on the molecular dynamics method computer simulation of the system of charged particles, interacting via a screened Coulomb potential (Yukawa potential), was performed with the imposition of an external uniform magnetic field. To solve the equations of motion of particles the high-speed Verlet algorithm was used. The constructed mathematical model also includes equations for the cage correlation functions, for the first time fixed separately for cases along and across the magnetic field. We analyzed the influence of the strong coupling and strong magnetic field on the localization of the particles along and across the magnetic field on the basis of the equations of the mathematical model. Also, the analysis of the changing in the particle trajectories, when the magnetic field increases, was made. The phase portraits were constructed. The results were obtained for a wide range of the system parameters (the coupling parameter, the strength of magnetic field, the screening parameter).
Keywords: molecular dynamics method, Verlet algorithm, external homogenous magnetic field, dusty plasma, localization of the particles.
@article{MM_2018_30_3_a8,
     author = {K. N. Dzhumagulova and T. S. Ramazanov and R. U. Masheyeva and Z. Donko and M. N. Kalimoldayev},
     title = {Model for investigation of charged particles localization in the presence of the external magnetic field},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {135--146},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_3_a8/}
}
TY  - JOUR
AU  - K. N. Dzhumagulova
AU  - T. S. Ramazanov
AU  - R. U. Masheyeva
AU  - Z. Donko
AU  - M. N. Kalimoldayev
TI  - Model for investigation of charged particles localization in the presence of the external magnetic field
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 135
EP  - 146
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_3_a8/
LA  - ru
ID  - MM_2018_30_3_a8
ER  - 
%0 Journal Article
%A K. N. Dzhumagulova
%A T. S. Ramazanov
%A R. U. Masheyeva
%A Z. Donko
%A M. N. Kalimoldayev
%T Model for investigation of charged particles localization in the presence of the external magnetic field
%J Matematičeskoe modelirovanie
%D 2018
%P 135-146
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_3_a8/
%G ru
%F MM_2018_30_3_a8
K. N. Dzhumagulova; T. S. Ramazanov; R. U. Masheyeva; Z. Donko; M. N. Kalimoldayev. Model for investigation of charged particles localization in the presence of the external magnetic field. Matematičeskoe modelirovanie, Tome 30 (2018) no. 3, pp. 135-146. http://geodesic.mathdoc.fr/item/MM_2018_30_3_a8/

[1] Ott T., Bonitz M., Hartmann P., Donko Z., “Higher harmonics of the magnetoplasmon in strongly coupled Coulomb and Yukawa systems”, Phys. Rev. E, 83 (2011), 046403 | DOI

[2] Jiang K., Song Y. H., Wang Y. N., “Theoretical study of the wave dispersion relation for a two-dimensional strongly coupled Yukawa system in a magnetic field”, Phys. Plasmas, 14 (2007), 103708 | DOI

[3] Bonitz M., Donko Z., Ott T., Kahlert H., Hartmann P., “Nonlinear magnetoplasmons in strongly coupled Yukawa plasmas”, Phys. Rev. Lett., 105 (2010), 055002 | DOI

[4] Maiorov S. A., Ramazanov T. S., Dzhumagulova K. N., Dosbolayev M. K., Jumabekov A. N., “Investigation of plasma-dust structures in He-Ar gas mixture”, Phys. Plasmas, 15 (2008), 093701 | DOI

[5] Dzhumagulova K. N., Ramazanov T. S., Masheyeva R. U., “Diffusion coefficient of threedimensional Yukawa liquids”, Phys. Plasmas, 20 (2013), 113702 | DOI

[6] Hartmann P., Kalman G. J., Donko Z., Kutasi K., “Equilibrium properties and phase diagram of two-dimensional Yukawa systems”, Phys. Rev. E, 72 (2005), 026409 | DOI

[7] Donko Z., Kalman G. J., Golden K. I., “Caging of particles in one-component plasmas”, Phys. Rev. Lett., 88 (2002), 225001 | DOI

[8] Donko Z., Hartmann P., Kalman G. J., “Molecular dynamics simulations of strongly coupled plasmas: Localization and microscopic dynamics”, Phys. Plasmas, 10 (2003), 1563 | DOI

[9] Ohta H., Hamaguchi S., “Molecular dynamics evaluation of self-diffusion in Yukawa systems”, Phys. Plasmas, 7 (2000), 4506 | DOI

[10] Spreiter Q., Walter M., “Classical molecular dynamics simulation with the velocity Verlet algorithm at strong external magnetic fields”, J. of Comp. Phys., 152 (1999), 102–119 | DOI

[11] Rabani E., Gezelter J. D., Berne B. J., “Calculating the hopping rate for self-diffusion on rough potential energy surfaces: Cage correlations”, Journal of chemical physics, 107:17 (1997), 6867–6876 | DOI

[12] Rabani E., Gezelter J. D., Berne B. J., “Direct observation of stretched-exponential relaxation in low-temperature Lennard-Jones systems using the cage correlation function”, Physical Review Letter, 82:18 (1999), 3649–3652 | DOI