An implicit Lagrangian--Eulerian ЕМВ-method for solving two-dimensional hydrodynamic equations on unstructured meshes
Matematičeskoe modelirovanie, Tome 30 (2018) no. 3, pp. 118-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents an ALE method for solving hydrodynamic equations on unstructured meshes. It is based on an implicit finite-volume scheme derived with Godunov's approach. The basic quantities — destiny, temperature and velocity are stored in cell centers. For relations between pressure and velocities in the centers and their analogs in the nodes, we use those proposed by P.-H. Maire et al. A piecewise linear TVD reconstruction of pressure and velocity in the cell is used achieve the second order of approximation keeping monotonicity of smooth solutions. Mesh rezoning during the calculation is implemented. The quantities are recalculated through mapping the old mesh onto the new one. A limited piecewise linear representation is used for quantities in the cells of the old mesh and interface in the mixed cells are reconstructed with the VOF method. Mass, momentum and total energy are conserved.
Keywords: implicit finite-volume ALE methods, higher order remapping, VOF method, unstructured mesh.
Mots-clés : TVD reconstruction
@article{MM_2018_30_3_a7,
     author = {E. M. Vaziev and A. D. Gadzhiev and S. Yu. Kuzmin and Yu. G. Panyukov},
     title = {An implicit {Lagrangian--Eulerian} {{\CYRE}{\CYRM}{\CYRV}-method} for solving two-dimensional hydrodynamic equations on unstructured meshes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {118--134},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_3_a7/}
}
TY  - JOUR
AU  - E. M. Vaziev
AU  - A. D. Gadzhiev
AU  - S. Yu. Kuzmin
AU  - Yu. G. Panyukov
TI  - An implicit Lagrangian--Eulerian ЕМВ-method for solving two-dimensional hydrodynamic equations on unstructured meshes
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 118
EP  - 134
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_3_a7/
LA  - ru
ID  - MM_2018_30_3_a7
ER  - 
%0 Journal Article
%A E. M. Vaziev
%A A. D. Gadzhiev
%A S. Yu. Kuzmin
%A Yu. G. Panyukov
%T An implicit Lagrangian--Eulerian ЕМВ-method for solving two-dimensional hydrodynamic equations on unstructured meshes
%J Matematičeskoe modelirovanie
%D 2018
%P 118-134
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_3_a7/
%G ru
%F MM_2018_30_3_a7
E. M. Vaziev; A. D. Gadzhiev; S. Yu. Kuzmin; Yu. G. Panyukov. An implicit Lagrangian--Eulerian ЕМВ-method for solving two-dimensional hydrodynamic equations on unstructured meshes. Matematičeskoe modelirovanie, Tome 30 (2018) no. 3, pp. 118-134. http://geodesic.mathdoc.fr/item/MM_2018_30_3_a7/

[1] C.W. Hirt, A.A. Amsden, J. L. Cook, “An arbitrary Lagrangian-Eulerian computing method for all flow speeds”, J. Comp. Phys., 14 (1974), 227–253 | DOI | MR

[2] S.M. Bakhrakh, V.F. Spiridonov, A.A. Shanin, “Metod rascheta techenii neodnorodnoi sredy v lagranzhevo-eilerovykh peremennykh”, DAN SSSR, 276:4 (1984), 829–833

[3] S.G. Volkov, B.M. Shogov, I.D. Sofronov, “Sovremennoe sostoianie metodiki MEDUZA”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh processov, 1999, no. 4, 57–63

[4] V.V. Raskazove, I.D. Sofronov, V.N. Motlokhov, A.N. Shaporenko, A.Iu. Eremenko, P.A. Rasskazov, “Metodika resheniia mogomerhykh zadach mechaniki sploshnoi sredy na nereguliarnikh setkah”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh processov, 1999, no. 4, 51–56

[5] S.S. Sokolov, A.I. Panov, A.A. Voropinov, I.G. Novikov, I.V. Sobolev, A.V. Ialozo, “Metodika TIM rascheta trekhmernykh zadach mekhaniki sploshnykh sred na nestrukturirovannykh mnogogrannykh lagranzhevykh setkakh”, Voprosy atomnoi nauki I tekhniki. Ser. Matematicheskoe modelirovanie fizichskikh processov, 2005, no. 3, 37–52

[6] F.L. Addessio, J.R. Baumgardner, J.K. Dukowicz, N.L. Johnson, B.A. Kashiwa, R.M. Rauenzahn, Ch. Zemach, CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip, Los Alamos National Laboratoru Rerort LA-10613-MSREV.1, 1990, 165 pp. http://www.basko.net/mm/ralef/LANL1990_10613Addessio.pdf

[7] P.-H. Maire, “A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry”, J. Comp. Phys., 228 (2009), 6882–6915 | DOI | MR

[8] Z.J. Shen, G.W. Yuan, J.Y. Yue, X. Z. Liu, “A new cell-centered Lagrangian scheme in two dimensional cylindrical geometry”, Science in China Series A: Mathematics, 51:8 (2008), 1479–1494 | DOI | MR

[9] T. Barth, Numerical Methods for Conservation Laws on Structured and Unstructured Meshes, VKI Lecture Series, 2003

[10] S.K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matematicheskii sbornik, 47:3 (1959), 271–306

[11] S.K. Godunov, A.V. Zabrodin, M.Ia. Ivanov, A.N. Kraiko, G.P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoy dinamiki, Nauka, M., 1976

[12] E.M. Vaziev, A.D. Gadzhiev, S.Iu. Kuzmin, “Neiavnyi konechno-obiemnyi metod ROMB dlia chislennogo resheniia dvumernykh uravnenii gazovoi dinamiki na nereguliarnykh setkakh iz treugolnykh i chetyrekhugolnykh iacheek”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh processov, 2006, no. 4, 15–28

[13] A.V. Skovpen, V.A. Bychenkov, I.I. Kuznetsova, “Avtomaticheskaia lokalnaia perestroika neregulyarnykh chetyrekhugolnykh setok pri raschte zadach s silnymi deformatsiiami”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh processov, 2007, no. 1, 38–45

[14] R. Liska, M. Shashkov, P. Vachal, B. Wendroff, “Synchronized flux corrected remapping for ALE methods”, Computers Fluids, 46 (2011), 312–317 | DOI | MR

[15] G. Blanchard, R. Loubere, “High order accurate conservative remapping scheme on polygonal meshes using a posteriori MOOD limiting”, Comp. Fluids, 136 (2016), 83–103 | DOI | MR

[16] J.E. Pilliod Jr., E.G. Puckett, “Second-order accurate volume-of-fluid algorithms for tracking material interfaces”, J. Comp. Phys., 199 (2004), 465–502 | DOI | MR

[17] K. Shahbazi, M. Paraschivoiu, J. Mostaghimi, “Second order accurate volume tracking based on remapping for triangular meshes”, J. Comp. Phys., 188 (2003), 100–122 | DOI

[18] P.P. Whalen, “Algebraic Limitations on Two-Dimensional Hydrodynamics Simulations”, J. Comp. Phys., 124 (1996), 46–54 | DOI | MR

[19] P.-H. Maire, R. Loubere, P. Vachal, “Staggered Lagrangian discretization based on cellcentered Riemann solver and associated hydrodynamics scheme”, Commun. Comput. Phys., 10 (2011), 940–978 | DOI | MR

[20] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, 2003, 528 pp. | MR

[21] P. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys., 54:1 (1984), 115–173 | DOI | MR

[22] V.F. Kuropatenko, G.V. Kovalenko, B.I. Kuznetsova i dr., “Kompleks “Volna” i neodnorodnyi raznostnyi metod dlia rascheta neustanovivshikhsia dvizhenii szhimaemykh sploshnykh sred. Ch. 1. Neodnorodnyi raznostnyu metod”, Voprosy atomnoi nauki i tekhniki. Seriia: Matematicheskoe modelirovanie fizicheskikh processov, 1989, no. 2, 9–18

[23] B.M. Zhogov, B.A. Klopov, E.E. Meshkov, V.M. Pasternak, A.I. Tolshmiakov, “Chislennyi raschet i sravnenie s eksperimentom zadachi o prokhozhdenii ploskoi udarnoi volni cherez “tiazhelyi” ugol”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh processov, 1992, no. 3, 59–65