Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_3_a3, author = {P. V. Balabanov and A. A. Krimshtein and S. V. Mischenko and A. P. Savenkov}, title = {Modeling of the air regeneration in closed cabin}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {52--66}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_3_a3/} }
TY - JOUR AU - P. V. Balabanov AU - A. A. Krimshtein AU - S. V. Mischenko AU - A. P. Savenkov TI - Modeling of the air regeneration in closed cabin JO - Matematičeskoe modelirovanie PY - 2018 SP - 52 EP - 66 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_3_a3/ LA - ru ID - MM_2018_30_3_a3 ER -
P. V. Balabanov; A. A. Krimshtein; S. V. Mischenko; A. P. Savenkov. Modeling of the air regeneration in closed cabin. Matematičeskoe modelirovanie, Tome 30 (2018) no. 3, pp. 52-66. http://geodesic.mathdoc.fr/item/MM_2018_30_3_a3/
[1] J. Holquist, P. Koenig, S. Tozer, A.A. Williams, D. Klaus, L. Stodieck, “Atmosphere regeneration for the transport of Rodents to and from the ISS – design trades and test results”, 43rd International Conference on Environmental Systems, American Institute of Aeronautics and Astronautics, Vail, Colorado, USA, 2013 | DOI
[2] J.B. Holquist, D.M. Klaus, “Characterization of potassium superoxide and a novel packed bed configuration for closed environment air revitalization”, 44th International Conference on Environmental Systems, ICES, Tucson, Arizona, USA, 2014
[3] J. Li, L. Jin, S. Wang, Z. Zhang, Y. Xu, Q. Li, “Experimental study on oxygen supply performance influence factors of potassium superoxide oxygen board used in confined space”, Advanced Materials Research, 726-731 (2013), 363–367 | DOI
[4] J.H. Kim, Y.K. Park, S.K. Jeong, “CO2 conversion to O2 by chemical lung in the presence of potassium superoxide in the silicone polymer matrix”, Korean J. Chem. Eng., 27:1 (2010), 320–323 | DOI
[5] B.F. Monzyk, C.M. Cucksey, T.S. Rennick, B.J. Sikorski, M.W. McCauley, CO2 sorbent composition with O2 co-generation, Pat. 2012/018870 WO, B01J 20/06, B32B 3/266, B32B 9/00, B32B 3/26, A62B 7/08, A62B 21/00, A61M 16/22, A62B 23/02, Appl. No.: PCT/US2011/046343. Filed: 02.08.2011. Pub.: 09.02.2012, 68 pp.
[6] W. Juda, Methods of generating oxygen from air via an alkali superoxide, Pat. 7261959 US, C01B 13/02, C01B 15/043, H01M 8/04, Appl. No.: 11/023176. Filed 28.12.2004. Pat.: 28.08.2007, 4 pp.
[7] S. Choi, J.H. Drese, C.W. Jones, “Adsorbent materials for carbon dioxide capture from large anthropogenic point sources”, ChemSusChem., 2:9 (2009), 796–854 | DOI
[8] S. Wang, S. Yan, X. Ma, J. Gong, “Recent advances in capture of carbon dioxide using alkali-metal-based oxides”, Energy Environ. Sci., 4:10 (2011), 3805–3819 | DOI
[9] C.-H. Yu, C.-H. Huang, C.-S. Tan, “A review of CO2 capture by absorption and adsorption”, Aerosol Air Qual. Res., 12:5 (2012), 745–769 | DOI
[10] T.V. Gladysheva, N.F. Gladyshev, M.Yu. Plotnikov, R.V. Dorokhov, S.I. Dvoretskii, A.I. Karelin, “Kinetics of carbon dioxide chemisorption and oxygen release under static conditions by nanocrystalline KO2 deposited on a fiber-glass matrix”, Russian Journal of Applied Chemistry, 88:6 (2015), 1015–1019 | DOI
[11] Yu.Yu. Gromov, V.G. Matveikin, B.V. Putin, “Mathematical modeling and control of air regeneration in a hermetically closed volume”, Theor. Found. Chem. Eng., 31:6 (1997), 582–591
[12] S.V. Mishchenko, P.V. Balabanov, A.A. Krimshtein, “Dynamics of carbon dioxide chemisorption by substances based on alkali metal superoxides”, Theor. Found. Chem. Eng., 48:3 (2014), 306–311 | DOI | DOI
[13] A.A. Krimshtein, Iu.Iu. Gromov, V.I. Konovalov, A.S. Kuznetsov, “Matematicheskoe modelirovanie i analiz protsessov estestvennoi konvektsii v tekhnologicheskom oborudovanii s uchetom khimicheskoi reaktsii”, Vestnik TGTU, 5:1–2 (1999), 52–67 | DOI
[14] A. Kolbancev, V. Kolin, A. Krimstejn, M. Gerke, K. Hartmann, “Mathematische modellierung von sorptionssystemen mit ruckduhrgen”, Wiss. Zeit. THL, 26:2 (1984), 273–283
[15] S.V. Mishchenko, P.V. Balabanov, A.A. Krimshtein, S.V. Ponomarev, “Dinamika khemosorbtsii regenerativnymi veshchestvami na osnove superoksidov shchelochnykh metallov i poglotitelei”, Vestnik TGTU, 16:4 (2010), 870–881 | DOI
[16] A.A. Krimshtein, S.V. Plotnikova, V.I. Konovalov, B.V. Putin, “Simulation of the operation of isolating apparatus based on chemically bound oxygen”, Journal of Applied Chemistry of the USSR, 65:11 (1992), 2031–2037
[17] A.A. Krimshtein, S.V. Plotnikova, V.I. Konovalov, B.V. Putin, “Calculation of self-contained respiratory sorption apparatus with a circular pattern of air-flow”, Russian Journal of Applied Chemistry, 66:8 (1993), 1356–1357
[18] P.V. Balabanov, A.A. Krimshtein, S.V. Ponomarev, S.V. Shcherbakov, “Metod otsenki nadezhnosti raboty individualnykh izoliruiushchikh apparatov pri malom chisle opytnykh dannykh”, Vestnik TGTU, 15:2 (2009), 356–365
[19] S.B. Putin, Matematicheskoe modelirovanie i upravlenie protsesom regeneratsii vozdukha, Mashinostroenie, M., 2008, 176 pp.
[20] P.V. Balabanov, A.A. Krimshtein, S.V. Ponomarev, “Identifikatsiia parametrov matematicheskikh modelei regeneratsii vozdukha sredstvami zashchity izoliruiushchego tipa”, Vestnik Voronezhskogo gos. tekhn. un-ta, 6:7 (2010), 68–73
[21] N.F. Gladyshev, T.V. Gladysheva, S.I. Dvoretskii, S.B. Putin, M.A. Ulianova, Iu.A. Ferapontov, Regenerativnye produkty novogo pokoleniia: tekhnologiia i apparaturnoe oformlenie, Mashinostroenie-1, M., 2007, 156 pp.
[22] A.M. Kudriavtsev, A.V. Kudriavtseva, A.A. Krimshtein, S.V. Plotnikova, “Obosnovanie vybora formalno-kineticheskogo uravneniia khemosorbtsii primenitelno k chastitse sfericheskoi formy”, Vestnik TGTU, 1:1–2 (1995), 98–105