Modeling of the air regeneration in closed cabin
Matematičeskoe modelirovanie, Tome 30 (2018) no. 3, pp. 52-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of the life support system designed to maintain the specified concentrations of carbon dioxide and oxygen in an isolated volume is obtained. The functioning of the system is based on the reactions of carbon dioxide absorption and release of oxygen by chemisorbents on the base of alkali metal superoxides. The suggested algorithm of system operation ensures the least fluctuations in the concentrations of controlled gas components. The model is applied for selecting the period of regenerative cartridges replacement and study the stability of the system functioning. The possibility of the applying of the analytical solutions of the combined differential equations of the mass transfer in the regenerative and absorption cartridges is examined.
Keywords: chemisorbent, regeneration, cartridge, model, control, carbon dioxide, oxygen
Mots-clés : air, concentration.
@article{MM_2018_30_3_a3,
     author = {P. V. Balabanov and A. A. Krimshtein and S. V. Mischenko and A. P. Savenkov},
     title = {Modeling of the air regeneration in closed cabin},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {52--66},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_3_a3/}
}
TY  - JOUR
AU  - P. V. Balabanov
AU  - A. A. Krimshtein
AU  - S. V. Mischenko
AU  - A. P. Savenkov
TI  - Modeling of the air regeneration in closed cabin
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 52
EP  - 66
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_3_a3/
LA  - ru
ID  - MM_2018_30_3_a3
ER  - 
%0 Journal Article
%A P. V. Balabanov
%A A. A. Krimshtein
%A S. V. Mischenko
%A A. P. Savenkov
%T Modeling of the air regeneration in closed cabin
%J Matematičeskoe modelirovanie
%D 2018
%P 52-66
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_3_a3/
%G ru
%F MM_2018_30_3_a3
P. V. Balabanov; A. A. Krimshtein; S. V. Mischenko; A. P. Savenkov. Modeling of the air regeneration in closed cabin. Matematičeskoe modelirovanie, Tome 30 (2018) no. 3, pp. 52-66. http://geodesic.mathdoc.fr/item/MM_2018_30_3_a3/

[1] J. Holquist, P. Koenig, S. Tozer, A.A. Williams, D. Klaus, L. Stodieck, “Atmosphere regeneration for the transport of Rodents to and from the ISS – design trades and test results”, 43rd International Conference on Environmental Systems, American Institute of Aeronautics and Astronautics, Vail, Colorado, USA, 2013 | DOI

[2] J.B. Holquist, D.M. Klaus, “Characterization of potassium superoxide and a novel packed bed configuration for closed environment air revitalization”, 44th International Conference on Environmental Systems, ICES, Tucson, Arizona, USA, 2014

[3] J. Li, L. Jin, S. Wang, Z. Zhang, Y. Xu, Q. Li, “Experimental study on oxygen supply performance influence factors of potassium superoxide oxygen board used in confined space”, Advanced Materials Research, 726-731 (2013), 363–367 | DOI

[4] J.H. Kim, Y.K. Park, S.K. Jeong, “CO2 conversion to O2 by chemical lung in the presence of potassium superoxide in the silicone polymer matrix”, Korean J. Chem. Eng., 27:1 (2010), 320–323 | DOI

[5] B.F. Monzyk, C.M. Cucksey, T.S. Rennick, B.J. Sikorski, M.W. McCauley, CO2 sorbent composition with O2 co-generation, Pat. 2012/018870 WO, B01J 20/06, B32B 3/266, B32B 9/00, B32B 3/26, A62B 7/08, A62B 21/00, A61M 16/22, A62B 23/02, Appl. No.: PCT/US2011/046343. Filed: 02.08.2011. Pub.: 09.02.2012, 68 pp.

[6] W. Juda, Methods of generating oxygen from air via an alkali superoxide, Pat. 7261959 US, C01B 13/02, C01B 15/043, H01M 8/04, Appl. No.: 11/023176. Filed 28.12.2004. Pat.: 28.08.2007, 4 pp.

[7] S. Choi, J.H. Drese, C.W. Jones, “Adsorbent materials for carbon dioxide capture from large anthropogenic point sources”, ChemSusChem., 2:9 (2009), 796–854 | DOI

[8] S. Wang, S. Yan, X. Ma, J. Gong, “Recent advances in capture of carbon dioxide using alkali-metal-based oxides”, Energy Environ. Sci., 4:10 (2011), 3805–3819 | DOI

[9] C.-H. Yu, C.-H. Huang, C.-S. Tan, “A review of CO2 capture by absorption and adsorption”, Aerosol Air Qual. Res., 12:5 (2012), 745–769 | DOI

[10] T.V. Gladysheva, N.F. Gladyshev, M.Yu. Plotnikov, R.V. Dorokhov, S.I. Dvoretskii, A.I. Karelin, “Kinetics of carbon dioxide chemisorption and oxygen release under static conditions by nanocrystalline KO2 deposited on a fiber-glass matrix”, Russian Journal of Applied Chemistry, 88:6 (2015), 1015–1019 | DOI

[11] Yu.Yu. Gromov, V.G. Matveikin, B.V. Putin, “Mathematical modeling and control of air regeneration in a hermetically closed volume”, Theor. Found. Chem. Eng., 31:6 (1997), 582–591

[12] S.V. Mishchenko, P.V. Balabanov, A.A. Krimshtein, “Dynamics of carbon dioxide chemisorption by substances based on alkali metal superoxides”, Theor. Found. Chem. Eng., 48:3 (2014), 306–311 | DOI | DOI

[13] A.A. Krimshtein, Iu.Iu. Gromov, V.I. Konovalov, A.S. Kuznetsov, “Matematicheskoe modelirovanie i analiz protsessov estestvennoi konvektsii v tekhnologicheskom oborudovanii s uchetom khimicheskoi reaktsii”, Vestnik TGTU, 5:1–2 (1999), 52–67 | DOI

[14] A. Kolbancev, V. Kolin, A. Krimstejn, M. Gerke, K. Hartmann, “Mathematische modellierung von sorptionssystemen mit ruckduhrgen”, Wiss. Zeit. THL, 26:2 (1984), 273–283

[15] S.V. Mishchenko, P.V. Balabanov, A.A. Krimshtein, S.V. Ponomarev, “Dinamika khemosorbtsii regenerativnymi veshchestvami na osnove superoksidov shchelochnykh metallov i poglotitelei”, Vestnik TGTU, 16:4 (2010), 870–881 | DOI

[16] A.A. Krimshtein, S.V. Plotnikova, V.I. Konovalov, B.V. Putin, “Simulation of the operation of isolating apparatus based on chemically bound oxygen”, Journal of Applied Chemistry of the USSR, 65:11 (1992), 2031–2037

[17] A.A. Krimshtein, S.V. Plotnikova, V.I. Konovalov, B.V. Putin, “Calculation of self-contained respiratory sorption apparatus with a circular pattern of air-flow”, Russian Journal of Applied Chemistry, 66:8 (1993), 1356–1357

[18] P.V. Balabanov, A.A. Krimshtein, S.V. Ponomarev, S.V. Shcherbakov, “Metod otsenki nadezhnosti raboty individualnykh izoliruiushchikh apparatov pri malom chisle opytnykh dannykh”, Vestnik TGTU, 15:2 (2009), 356–365

[19] S.B. Putin, Matematicheskoe modelirovanie i upravlenie protsesom regeneratsii vozdukha, Mashinostroenie, M., 2008, 176 pp.

[20] P.V. Balabanov, A.A. Krimshtein, S.V. Ponomarev, “Identifikatsiia parametrov matematicheskikh modelei regeneratsii vozdukha sredstvami zashchity izoliruiushchego tipa”, Vestnik Voronezhskogo gos. tekhn. un-ta, 6:7 (2010), 68–73

[21] N.F. Gladyshev, T.V. Gladysheva, S.I. Dvoretskii, S.B. Putin, M.A. Ulianova, Iu.A. Ferapontov, Regenerativnye produkty novogo pokoleniia: tekhnologiia i apparaturnoe oformlenie, Mashinostroenie-1, M., 2007, 156 pp.

[22] A.M. Kudriavtsev, A.V. Kudriavtseva, A.A. Krimshtein, S.V. Plotnikova, “Obosnovanie vybora formalno-kineticheskogo uravneniia khemosorbtsii primenitelno k chastitse sfericheskoi formy”, Vestnik TGTU, 1:1–2 (1995), 98–105