Modeling of shock waves reflection and focusing inside a cone in chemically reacting gas mixture
Matematičeskoe modelirovanie, Tome 30 (2018) no. 3, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of the present paper is three-dimensional numerical simulation of shock waves reflecting and focusing inside a cone in chemically reacting gas mixture and determining the conditions, under which onset of detonation takes place. The results of validation of the developed code by comparing numeric results with physical experiment on shock waves reflection are presented. Based on these test kinetic model for chemical transformations is improved.
Mots-clés : combustion
Keywords: detonation, chemical kinetics, gas dynamics, parallel computing.
@article{MM_2018_30_3_a0,
     author = {L. I. Stamov and V. V. Tyurenkova},
     title = {Modeling of shock waves reflection and focusing inside a cone in chemically reacting gas mixture},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_3_a0/}
}
TY  - JOUR
AU  - L. I. Stamov
AU  - V. V. Tyurenkova
TI  - Modeling of shock waves reflection and focusing inside a cone in chemically reacting gas mixture
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 3
EP  - 18
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_3_a0/
LA  - ru
ID  - MM_2018_30_3_a0
ER  - 
%0 Journal Article
%A L. I. Stamov
%A V. V. Tyurenkova
%T Modeling of shock waves reflection and focusing inside a cone in chemically reacting gas mixture
%J Matematičeskoe modelirovanie
%D 2018
%P 3-18
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_3_a0/
%G ru
%F MM_2018_30_3_a0
L. I. Stamov; V. V. Tyurenkova. Modeling of shock waves reflection and focusing inside a cone in chemically reacting gas mixture. Matematičeskoe modelirovanie, Tome 30 (2018) no. 3, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2018_30_3_a0/

[1] N.N. Smirnov, V.F. Nikitin, “Modeling and simulation of hydrogen combustion in engines”, International Journal of Hydrogen Energy, 39:2 (2014), 1122–1136 | DOI | MR

[2] N.N. Smirnov, V.B. Betelin, R.M. Shagaliev, V.F. Nikitin, I.M. Belyakov, Yu.N. Deryuguin, S.V. Aksenov, D.A. Korchazhkin, “Hydrogen fuel rocket engines simulation using LOGOS code”, International Journal of Hydrogen Energy, 39:20 (2014), 10748–10756 | DOI

[3] N.N. Smirnov, V.B. Betelin, V.F. Nikitin, Yu.G. Phylippov, Jaye Koo, “Detonation engine fed by acetylene-oxygen mixture”, Acta Astronautica, 104:1 (2014), 134–146 | DOI | MR

[4] N.N. Smirnov, V.F. Nikitin, Sh. Alyari-Shourekhdeli, “Transitional regimes of wave propagation in metastable systems”, Combustion, explosion and shock waves, 44:5 (2008), 517–528 | DOI

[5] N.N. Smirnov, V.F. Nikitin, Yu.G. Phylippov, “Deflagration to detonation transition in gases in tubes with cavities”, Journal of Engineering Physics and Thermophysics, 83:6 (2010), 1287–1316 | DOI

[6] N.N. Smirnov, V.F. Nikitin, S. Alyari Shurekhdeli, “Investigation of Self-Sustaining Waves in Metastable Systems: Deflagration-to-Detonation Transition”, Journal of Propulsion and Power, 25:3 (2009), 593–608 | DOI | MR

[7] V.F. Nikitin, V.R. Dushin, Y.G. Phylippov, J.C. Legros, “Pulse detonation engines: technical approaches”, Acta Astronautica, 64:2–3 (2009), 281–287 | DOI

[8] Y. Wang, J. Wang, Y. Li, Y. Li, “Induction for multiple rotating detonation waves in the hydrogen-oxygen mixture with tangential flow”, Intern. J. of Hydrogen Energy, 39:22 (2014), 11792–11797 | DOI

[9] A. Heidari, J.X. Wen, “Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture”, International Journal of Hydrogen Energy, 39:36 (2014), 21317–21327 | DOI

[10] Dan Wu, Yan Liu, Yusi Liu, Jianping Wang, “Numerical investigations of the restabilization of hydrogen-air rotating detonation engines”, Intern. J. of Hydrogen Energy, 39:28 (2014), 15803–15809 | DOI

[11] Yu.G. Phylippov, V.R. Dushin, V.F. Nikitin, V.A. Nerchenko, N.V. Korolkova, V.M. Guendugov, “Fluid mechanics of pulse detonation thrusters”, Acta Astronautica, 76 (2012), 115–126 | DOI

[12] Min-cheol Gwak, Younghun Lee, Ki-hong Kim, Jack J. Yoh, “Deformable wall effects on the detonation of combustible gas mixture in a thin-walled tube”, International Journal of Hydrogen Energy, 40:7 (2015), 3006–3014 | DOI

[13] Yuhui Wang, Jianping Wang, “Effect of equivalence ratio on the velocity of rotating detonation”, International Journal of Hydrogen Energy, 40:25 (2015), 7949–7955 | DOI

[14] R.J. Kee et al., A software package for the analysis of gas-phase chemical and plasma kinetics, Chemkin Collection, release 3.6, Reaction Design, 2000

[15] N.M. Marinov, W.J. Pitz, C.K. Westbrook, M. Hori, N. Matsunaga, “An Experimental and Kinetic Calculation of the Promotion Effect of Hydrocarbons on the NO-NO$_2$ Conversion in a Flow Reactor”, Proceedings of the Combustion Institute, 27:1 (1998), 389–396 | DOI

[16] R.J. Kee, J.A. Miller, T.H. Jefferson, Chemkin: a general-purpose, problem-independent, transportable, Fortran chemical kinetics code package, Sandia National Laboratories Report SAND80-8003, 1980

[17] S. Gordon, B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. I. Analysis, NASA Reference Publication 1311, 1994

[18] S. Browne, J. Ziegler, J.E. Shepherd, Numerical Solution Methods for Shock and Detonation Jump Conditions, GALCIT Report FM2006.006, 2008

[19] Z.G. Pozdnyakov, B.D. Rossi, Handbook of industrial explosives and means of blasting, Nedra, M., 1977

[20] E.J. Orlova, Chemistry and technology of high explosives. Textbook for universities, Ed. 3-e, Rev., «Chemistry», Leningrad branch, L., 1981, 312 pp.

[21] U. Maas, J. Warnatz, “Ignition processes in hydrogen-oxygen mixtures”, Combustion and Flame, 74:1 (1988), 53–69 | DOI

[22] U. Maas, S. Pope, “Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space”, Combustion and Flame, 88 (1992), 239–264 | DOI

[23] J.T. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, 3d Edition, Springer, 2002 | MR

[24] Van Leer, “Towards the Ultimate Conservative Difference Scheme. A Second Order Sequel to Godunov's Method”, J. Com. Phys., 32 (1979), 101–136 | DOI | MR

[25] S. Fletcher, Computational methods in fluid dynamics, In 2 volumes, Springer, New York, 1991 | MR

[26] C.B. Koren, Numerical Methods for Advection-Diffusion Problems, Vieweg, Braunschweig, 1993, 117

[27] M.-S. Liou, “A Sequel to AUSM: AUSM+”, J. Comput. Phys., 129 (1996), 364–382 | DOI | MR

[28] A. Kurganov, D. Levy, “A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations”, SIAM J. Sci. Comput., 22:4 (2001), 1461–1488 | DOI | MR

[29] D.C. Wilcox, Turbulence modeling for CFD, DCW Industries, Inc., La Canada, California, 1993

[30] V.B. Betelin, N.N. Smirnov, V.F. Nikitin, M.N. Smirnova, L.I. Stamov, V.V. Tiurenkova, “Vychislitelnoe modelirovanie zadach goreniia gremuchikh gazovykh smesei”, Vestnik kibernetiki, 2016, no. 2, 25–49

[31] C.I. Hegheş, C1-C4 hydrocarbon oxidation mechanism, Dissertation for the degree of Doctor of Natural Sciences, Rupertus Carola University of Heidelberg, Germany, 2006

[32] Z. Hong, An improved hydrogen/oxygen mechanism based on shock tube/laser absorption measurements, Dissertation for the degree of Doctor of Philosophy, Stanford University, USA, 2010

[33] N.N. Smirnov, V.B. Betelin, V.F. Nikitin, L.I. Stamov, D.I. Altoukhov, “Accumulation of Errors in Numerical Simulations of Chemically Reacting Gas Dynamics”, Acta Astronautica, 117 (2015), 338–355 | DOI

[34] V.V. Martynenko, O.G. Penyaz'kov, K.A. Ragotner, S.I. Shabunya, “High-temperature ignition of hydrogen and air at high pressures downstream of the reflected shock wave”, Journal of Engineering Physics and Thermophysics, 77:4 (2004), 785–793 | DOI

[35] O.G. Penyazkov, K.A. Ragotner, A.J. Dean, B. Varatharajan, “Autoignition of propane-air mixtures behind reflected shock waves”, Proceedings of the Combustion Institute, 30:2 (2005), 1941–1947 | DOI