Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_3_a0, author = {L. I. Stamov and V. V. Tyurenkova}, title = {Modeling of shock waves reflection and focusing inside a cone in chemically reacting gas mixture}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--18}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_3_a0/} }
TY - JOUR AU - L. I. Stamov AU - V. V. Tyurenkova TI - Modeling of shock waves reflection and focusing inside a cone in chemically reacting gas mixture JO - Matematičeskoe modelirovanie PY - 2018 SP - 3 EP - 18 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_3_a0/ LA - ru ID - MM_2018_30_3_a0 ER -
%0 Journal Article %A L. I. Stamov %A V. V. Tyurenkova %T Modeling of shock waves reflection and focusing inside a cone in chemically reacting gas mixture %J Matematičeskoe modelirovanie %D 2018 %P 3-18 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2018_30_3_a0/ %G ru %F MM_2018_30_3_a0
L. I. Stamov; V. V. Tyurenkova. Modeling of shock waves reflection and focusing inside a cone in chemically reacting gas mixture. Matematičeskoe modelirovanie, Tome 30 (2018) no. 3, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2018_30_3_a0/
[1] N.N. Smirnov, V.F. Nikitin, “Modeling and simulation of hydrogen combustion in engines”, International Journal of Hydrogen Energy, 39:2 (2014), 1122–1136 | DOI | MR
[2] N.N. Smirnov, V.B. Betelin, R.M. Shagaliev, V.F. Nikitin, I.M. Belyakov, Yu.N. Deryuguin, S.V. Aksenov, D.A. Korchazhkin, “Hydrogen fuel rocket engines simulation using LOGOS code”, International Journal of Hydrogen Energy, 39:20 (2014), 10748–10756 | DOI
[3] N.N. Smirnov, V.B. Betelin, V.F. Nikitin, Yu.G. Phylippov, Jaye Koo, “Detonation engine fed by acetylene-oxygen mixture”, Acta Astronautica, 104:1 (2014), 134–146 | DOI | MR
[4] N.N. Smirnov, V.F. Nikitin, Sh. Alyari-Shourekhdeli, “Transitional regimes of wave propagation in metastable systems”, Combustion, explosion and shock waves, 44:5 (2008), 517–528 | DOI
[5] N.N. Smirnov, V.F. Nikitin, Yu.G. Phylippov, “Deflagration to detonation transition in gases in tubes with cavities”, Journal of Engineering Physics and Thermophysics, 83:6 (2010), 1287–1316 | DOI
[6] N.N. Smirnov, V.F. Nikitin, S. Alyari Shurekhdeli, “Investigation of Self-Sustaining Waves in Metastable Systems: Deflagration-to-Detonation Transition”, Journal of Propulsion and Power, 25:3 (2009), 593–608 | DOI | MR
[7] V.F. Nikitin, V.R. Dushin, Y.G. Phylippov, J.C. Legros, “Pulse detonation engines: technical approaches”, Acta Astronautica, 64:2–3 (2009), 281–287 | DOI
[8] Y. Wang, J. Wang, Y. Li, Y. Li, “Induction for multiple rotating detonation waves in the hydrogen-oxygen mixture with tangential flow”, Intern. J. of Hydrogen Energy, 39:22 (2014), 11792–11797 | DOI
[9] A. Heidari, J.X. Wen, “Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture”, International Journal of Hydrogen Energy, 39:36 (2014), 21317–21327 | DOI
[10] Dan Wu, Yan Liu, Yusi Liu, Jianping Wang, “Numerical investigations of the restabilization of hydrogen-air rotating detonation engines”, Intern. J. of Hydrogen Energy, 39:28 (2014), 15803–15809 | DOI
[11] Yu.G. Phylippov, V.R. Dushin, V.F. Nikitin, V.A. Nerchenko, N.V. Korolkova, V.M. Guendugov, “Fluid mechanics of pulse detonation thrusters”, Acta Astronautica, 76 (2012), 115–126 | DOI
[12] Min-cheol Gwak, Younghun Lee, Ki-hong Kim, Jack J. Yoh, “Deformable wall effects on the detonation of combustible gas mixture in a thin-walled tube”, International Journal of Hydrogen Energy, 40:7 (2015), 3006–3014 | DOI
[13] Yuhui Wang, Jianping Wang, “Effect of equivalence ratio on the velocity of rotating detonation”, International Journal of Hydrogen Energy, 40:25 (2015), 7949–7955 | DOI
[14] R.J. Kee et al., A software package for the analysis of gas-phase chemical and plasma kinetics, Chemkin Collection, release 3.6, Reaction Design, 2000
[15] N.M. Marinov, W.J. Pitz, C.K. Westbrook, M. Hori, N. Matsunaga, “An Experimental and Kinetic Calculation of the Promotion Effect of Hydrocarbons on the NO-NO$_2$ Conversion in a Flow Reactor”, Proceedings of the Combustion Institute, 27:1 (1998), 389–396 | DOI
[16] R.J. Kee, J.A. Miller, T.H. Jefferson, Chemkin: a general-purpose, problem-independent, transportable, Fortran chemical kinetics code package, Sandia National Laboratories Report SAND80-8003, 1980
[17] S. Gordon, B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. I. Analysis, NASA Reference Publication 1311, 1994
[18] S. Browne, J. Ziegler, J.E. Shepherd, Numerical Solution Methods for Shock and Detonation Jump Conditions, GALCIT Report FM2006.006, 2008
[19] Z.G. Pozdnyakov, B.D. Rossi, Handbook of industrial explosives and means of blasting, Nedra, M., 1977
[20] E.J. Orlova, Chemistry and technology of high explosives. Textbook for universities, Ed. 3-e, Rev., «Chemistry», Leningrad branch, L., 1981, 312 pp.
[21] U. Maas, J. Warnatz, “Ignition processes in hydrogen-oxygen mixtures”, Combustion and Flame, 74:1 (1988), 53–69 | DOI
[22] U. Maas, S. Pope, “Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space”, Combustion and Flame, 88 (1992), 239–264 | DOI
[23] J.T. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, 3d Edition, Springer, 2002 | MR
[24] Van Leer, “Towards the Ultimate Conservative Difference Scheme. A Second Order Sequel to Godunov's Method”, J. Com. Phys., 32 (1979), 101–136 | DOI | MR
[25] S. Fletcher, Computational methods in fluid dynamics, In 2 volumes, Springer, New York, 1991 | MR
[26] C.B. Koren, Numerical Methods for Advection-Diffusion Problems, Vieweg, Braunschweig, 1993, 117
[27] M.-S. Liou, “A Sequel to AUSM: AUSM+”, J. Comput. Phys., 129 (1996), 364–382 | DOI | MR
[28] A. Kurganov, D. Levy, “A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations”, SIAM J. Sci. Comput., 22:4 (2001), 1461–1488 | DOI | MR
[29] D.C. Wilcox, Turbulence modeling for CFD, DCW Industries, Inc., La Canada, California, 1993
[30] V.B. Betelin, N.N. Smirnov, V.F. Nikitin, M.N. Smirnova, L.I. Stamov, V.V. Tiurenkova, “Vychislitelnoe modelirovanie zadach goreniia gremuchikh gazovykh smesei”, Vestnik kibernetiki, 2016, no. 2, 25–49
[31] C.I. Hegheş, C1-C4 hydrocarbon oxidation mechanism, Dissertation for the degree of Doctor of Natural Sciences, Rupertus Carola University of Heidelberg, Germany, 2006
[32] Z. Hong, An improved hydrogen/oxygen mechanism based on shock tube/laser absorption measurements, Dissertation for the degree of Doctor of Philosophy, Stanford University, USA, 2010
[33] N.N. Smirnov, V.B. Betelin, V.F. Nikitin, L.I. Stamov, D.I. Altoukhov, “Accumulation of Errors in Numerical Simulations of Chemically Reacting Gas Dynamics”, Acta Astronautica, 117 (2015), 338–355 | DOI
[34] V.V. Martynenko, O.G. Penyaz'kov, K.A. Ragotner, S.I. Shabunya, “High-temperature ignition of hydrogen and air at high pressures downstream of the reflected shock wave”, Journal of Engineering Physics and Thermophysics, 77:4 (2004), 785–793 | DOI
[35] O.G. Penyazkov, K.A. Ragotner, A.J. Dean, B. Varatharajan, “Autoignition of propane-air mixtures behind reflected shock waves”, Proceedings of the Combustion Institute, 30:2 (2005), 1941–1947 | DOI