Discontinuous Galerkin method for ice strength investigation
Matematičeskoe modelirovanie, Tome 30 (2018) no. 2, pp. 110-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses numerical modeling of various ice strength measurement experiments including uniaxial compression and bending as well as comparison of data obtained from numerical experiments with field ones. Numerical simulation is based on dynamic continuum mechanics system of equations with ice considered as elasto-plastic medium with brittle and crushing fracture dynamic criteria. Simulation software developed by the authors is based on discontinuous Galerkin method and runs on high-performance systems with distributed memory. Estimation of explicit values used by mathematical models poses a major problem because it is impossible to measure some of them in field experiments directly due to multiple physical processes interference. It is only possible to measure directly their total influence in practice. However, this problem may be solved by comparison of numerical experiment with field experiment data. As a result of this work, elasto-plastic ice model adequacy is discussed and some missing physical properties are obtained from numerical experiments.
Keywords: numerical simulation, discontinuous Galerkin method, elasto-plastic medium, ice strength.
@article{MM_2018_30_2_a6,
     author = {V. A. Miryaha and A. V. Sannikov and V. A. Biryukov and I. B. Petrov},
     title = {Discontinuous {Galerkin} method for ice strength investigation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {110--118},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_2_a6/}
}
TY  - JOUR
AU  - V. A. Miryaha
AU  - A. V. Sannikov
AU  - V. A. Biryukov
AU  - I. B. Petrov
TI  - Discontinuous Galerkin method for ice strength investigation
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 110
EP  - 118
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_2_a6/
LA  - ru
ID  - MM_2018_30_2_a6
ER  - 
%0 Journal Article
%A V. A. Miryaha
%A A. V. Sannikov
%A V. A. Biryukov
%A I. B. Petrov
%T Discontinuous Galerkin method for ice strength investigation
%J Matematičeskoe modelirovanie
%D 2018
%P 110-118
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_2_a6/
%G ru
%F MM_2018_30_2_a6
V. A. Miryaha; A. V. Sannikov; V. A. Biryukov; I. B. Petrov. Discontinuous Galerkin method for ice strength investigation. Matematičeskoe modelirovanie, Tome 30 (2018) no. 2, pp. 110-118. http://geodesic.mathdoc.fr/item/MM_2018_30_2_a6/

[1] Nagruzki i vozdeistviya na gidrotehnicheskie soorugeniya (volnovie, ledovie i ot sudov), SNIP 2.06.04-82$^*$, 2012

[2] Pravila Rossiiskogo morskogo registra sudohodstva PBU/MSP, 2014

[3] D. Hilding, J. Forsberg, A. Gurtner, “Simulation of Loads from Drifting Ice Sheets on Offshore Structures”, 12$^{th}$ International LS-DYNA Users Conference

[4] D. Hilding, J. Forsberg, A. Gurtner, “Simulation of ice action loads on offshore structures”, 8$^{th}$ European LS-DYNA Users Conference (Strasbourg, 2011)

[5] B. Sand, L. Fransson, “Numerical simulation of level ice loads on Norstromsgrund lighthouse”, International Conference on Cold Climate Technology (Norway, 2014)

[6] Z. Liu, J. Amdahl, S. Loset, “Plasticity based material modelling of ice and its application to shipiceberg impacts”, Cold Reg. Sci. Technol., 65 (2011), 326–334 | DOI

[7] Yan Gao, Zhiqiang Hu, Jonas W. Ringsberg, Jin Wang, “An elastic-plastic ice material model for ship-iceberg collision simulations”, Ocean Engineering, 102 (2015), 27–39 | DOI

[8] V.D. Ivanov, V.I. Kondaurov, I.B. Petrov, A.S. Kholodov, “Raschet dinamicheskogo deformirovaniia i razrusheniia uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami”, Matem. modelirovanie, 2:11 (1990), 10–29

[9] V.A. Lobanov, “Modelirovanie lda v zadachah s konechno-elementnoi postanovkoi”, Differencialnie uravneniya i processi upravleniya, 2008, no. 4, 19–29

[10] V.A. Miryaha, A.V. Sannikov, I.B. Petrov, “Discontinuous Galerkin Method for Numerical Simulation of Dynamic Processes in Solids”, Math. Models and Comp. Simulations, 7:5 (2015), 446–455 | DOI | MR

[11] R. Radovitzky, A. Seagraves, M. Tupek, L. Noels, “A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method”, Comp. Methods Appl. Mech. Eng., 200 (2011), 326–344 | DOI | MR

[12] Soren Ehlers, Pentti Kujala, “Optimization-based material parameter identification for the numerical simulation of sea ice in four-point bending”, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 228:1 (2014), 70–80 | DOI | MR

[13] A.T. Bekker, Veroyatnostye kharakteristiki ledovykh nagruzok na sooruzheniia kontinentalnogo shelfa, Dalnauka, Vladivostok, 2004