Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_2_a3, author = {S. V. Kolesnikov and A. M. Saletsky and S. A. Dokukin and A. L. Klavsyuk}, title = {Kinetic {Monte} {Carlo} method: mathematical foundations and applications to physics of low-dimensional nanostructures}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {48--80}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_2_a3/} }
TY - JOUR AU - S. V. Kolesnikov AU - A. M. Saletsky AU - S. A. Dokukin AU - A. L. Klavsyuk TI - Kinetic Monte Carlo method: mathematical foundations and applications to physics of low-dimensional nanostructures JO - Matematičeskoe modelirovanie PY - 2018 SP - 48 EP - 80 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_2_a3/ LA - ru ID - MM_2018_30_2_a3 ER -
%0 Journal Article %A S. V. Kolesnikov %A A. M. Saletsky %A S. A. Dokukin %A A. L. Klavsyuk %T Kinetic Monte Carlo method: mathematical foundations and applications to physics of low-dimensional nanostructures %J Matematičeskoe modelirovanie %D 2018 %P 48-80 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2018_30_2_a3/ %G ru %F MM_2018_30_2_a3
S. V. Kolesnikov; A. M. Saletsky; S. A. Dokukin; A. L. Klavsyuk. Kinetic Monte Carlo method: mathematical foundations and applications to physics of low-dimensional nanostructures. Matematičeskoe modelirovanie, Tome 30 (2018) no. 2, pp. 48-80. http://geodesic.mathdoc.fr/item/MM_2018_30_2_a3/
[1] N. Metropolis et al., “Equation of state calculations by fast computing machines”, J. Chem. Phys., 21 (1953), 1087 | DOI
[2] I.M. Sobol, The Monte Carlo method, Nauka, M., 1968
[3] K. Binder, D.W. Heerman, Monte Carlo simulations in statistical physics, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1988 | MR
[4] M.P. Allen, D.J. Tildesley, Computer simulations of liquids, Oxford Univ. Press, Oxford, 1989
[5] M.E.I. Newman, G.T. Barkema, Monte Carlo methods in statistical physics, Oxford Univ. Press, Oxford, 2001 | MR
[6] D. Frenkel, B. Smith, Understanding molecular simulations: from algorithm to applications, Academic Press, N.-Y., 2002
[7] I.Z. Fisher, “Applications of the Monte Carlo method in statistical physics”, Phys. Usp., 2 (1960), 783 | DOI | MR
[8] C. Jacoboni, L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials”, Rev. Mod. Phys., 55 (1983), 645 | DOI
[9] M. Creutz, L. Jacobs, C. Rebbi, “Monte Carlo computations in lattice gauge theories”, Phys. Rep., 95 (1983), 201 | DOI | MR
[10] Yu.M. Makeenko, “The Monte Carlo method in lattice gauge theories”, Phys. Usp., 27 (1984), 401 | DOI | DOI
[11] H. De Raedt, A. Lagendijk, “Monte Carlo simulation of quantum statistical lattice models”, Phys. Rep., 127 (1985), 233 | DOI | MR
[12] M.A. Suhm, R.O. Watts, “Quantum Monte Carlo studies of vibrational states in molecules and clusters”, Phys. Rep., 204 (1991), 293 | DOI
[13] W. von der Linden, “A quantum Monte Carlo approach to many-body physics”, Phys. Rep., 220 (1992), 53 | DOI
[14] V.P. Kandidov, “Monte Carlo method in nonlinear statistical optics”, Phys. Usp., 39 (1996), 1243 | DOI | DOI
[15] I.K. Kamilov, A.K. Murtazaev, Kh.K. Aliev, “Monte Carlo studies of phase transitions and critical phenomena”, Phys. Usp., 42 (1999), 689 | DOI | DOI
[16] W.M.C. Foulkes, “Quantum Monte Carlo simulations of solids”, Rev. Mod. Phys., 73 (2001), 33 | DOI
[17] A.S. Mishchenko, “Diagrammatic Monte Carlo method as applied to the polaron problem”, Phys. Usp., 48 (2005), 887 | DOI | DOI
[18] E. Gull et al., “Continuous-time Monte Carlo methods for quantum impurity models”, Rev. Mod. Phys., 83 (2011), 349 | DOI
[19] J. Carlson et al., “Quantum Monte Carlo methods for nuclear physics”, Rev. Mod. Phys., 87 (2015), 1067 | DOI | MR
[20] J.M. Sellier, M. Nedjalkov, I. Dimon, “An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism”, Phys. Rep., 577 (2015), 1 | DOI | MR
[21] D.K. Belashchenko, “Diffusion mechanisms in disordered systems: computer simulation”, Phys. Usp., 42 (1999), 297 | DOI | DOI
[22] A.F. Voter, “Classically exact overlayer dynamics: Diffusion of rhodium cluster on Rh\{100\}”, Phys. Rev. B, 34 (1986), 6819 | DOI
[23] K.A. Fichthorn, W.H. Weinberg, “Theoretical foundations of dynamical Monte Carlo simulations”, J. Chem. Phys., 95 (1991), 1090 | DOI
[24] A.F. Voter, “Parallel replica method for dynamics of infrequent events”, Phys. Rev. B, 57 (1998), R13985 | DOI
[25] A.F. Voter, “A method for accelerating the molecular dynamics simulation of infrequent events”, J. Chem. Phys., 106 (1997), 4665 | DOI
[26] A.F. Voter, “Hyperdynamics: Accelerated molecular dynamics of infrequent events”, Phys. Rev. Lett., 78 (1997), 3908 | DOI
[27] M.D. Sorensen, A.F. Voter, “Temperature-accelerated dynamics for simulation of infrequent events”, J. Chem. Phys., 112 (2000), 9599 | DOI
[28] V. Bochenkov, N. Suetin, S. Shankar, “Extended temperature-accelerated dynamics: Enabling longtime full-scale modeling of large rare-event systems”, J. Chem. Phys., 141 (2014), 094105 | DOI
[29] G.H. Vineyard, “Frequency factors and isotope effects in solid state rare processes”, J. Chem. Phys., 3 (1957), 121
[30] D.E. Sanders, A.E. DePristo, “Predicted diffusion rates on fcc (001) metal surfaces for adsorbate/substrate combinations of Ni, Cu, Rh, Pd, Ag, Pt, Au”, Surf. Sci., 260 (1992), 116 | DOI
[31] U. Kürpick, T.S. Rahman, “Diffusion processes relevant to homoepitaxial growth on Ag\{100\}”, Phys. Rev. B, 57 (1998), 2482 | DOI
[32] U. Kürpick, T.S. Rahman, “Monovacancy diffusion on Ag\{100\}, Cu\{100\}, and Ni\{100\}: Prefactors and activation barriers”, Phys. Rev. B, 59 (1999), 11014 | DOI
[33] U. Kürpick, “Self-diffusion on \{100\}, \{110\}, and \{111\} surfaces of Ni and Cu: a detailed study of prefactors and activation energies”, Phys. Rev. B, 64 (2001), 075418 | DOI
[34] U. Kürpick, “Effect of adsorbate interactions on adatom self-diffusion on Cu\{111\} and Ni\{111\} surfaces”, Phys. Rev. B, 66 (2002), 165431 | DOI
[35] G. Boisvert, L.J. Lewis, “Self-diffusion of adatoms, dimmers, and vacancies on Cu\{100\}”, Phys. Rev. B, 56 (1997), 7643 | DOI
[36] N.N. Negulyaev et al., “Bilayer growth of nanoscale Co islands on Cu\{111\}”, Phys. Rev. B, 77 (2008), 125437 | DOI
[37] G. Boisvert, L.J. Lewis, A. Yelon, “Many-body nature of the Meyer-Neldel compensation law for diffusion”, Phys. Rev. Lett., 75 (1995), 469 | DOI
[38] J. Heinonen et al., “Island diffusion on metal fcc \{100\} surfaces”, Phys. Rev. Lett., 82 (1999), 2733 | DOI
[39] O. Biham et al., “Models for diffusion and island growth in metal monolayers”, Surf. Sci., 400 (1998), 29 | DOI
[40] H. Mehl et al., “Models for adatom diffusion on fcc (001) metal surfaces”, Phys. Rev. B, 60 (1999), 2106 | DOI
[41] H. Mehl et al., “Electromigration-induced flow of islands and voids on the Cu(001) surface”, Phys. Rev. B, 61 (2000), 4975 | DOI
[42] O. Pierre-Louis, T.L. Einstein, “Electromigration of single-layer clusters”, Phys. Rev. B, 62 (2000), 13697 | DOI
[43] J. Kauttonen, J. Merikoski, “Single-layer metal-on-metal islands driven by strong time-dependent forces”, Phys. Rev. E, 85 (2012), 011107 | DOI
[44] Latz et al., “Simulation of electromigration effects on voids in monocrystalline Ag films”, Phys. Rev. B, 85 (2012), 035449 | DOI
[45] R.S. Sorbello, “Theory of electromigration”, Solid State Phys., 51 (1997), 159 | DOI
[46] O. Mironets et al., “Direct evidence for mesoscopic relaxations in cobalt on Cu(001)”, Phys. Rev. Lett., 100 (2008), 096103 | DOI
[47] S. Pick et al., “Magnetism and structure on the atomic scale: Small cobalt clusters in Cu(001)”, Phys. Rev. B, 70 (2004), 224419 | DOI
[48] V.S. Stepanyuk et al., “Ab Initio approach for atomic relaxations in supported magnetic clusters”, Phase transitions, 78 (2005), 61 | DOI
[49] S.V. Kolesnikov, A.L. Klavsyuk, A.M. Saletsky, “Anisotropy of energy barriers for diffusion of the Co adatom in the vicinity of the Co islands on the Cu \{100\} surface”, Phys. Solid State, 53 (2011), 2504 | DOI
[50] J. Jacobsen et al., “Island shape-induced transition from 2D to 3D growth for Pt/Pt \{111\}”, Phys. Rev. Lett., 74 (1995), 2295 | DOI
[51] A. Bogicevic, J. Strömquist, B. I. Lundquist, “Low-symmetry diffusion barriers in homoepitaxial growth of Al \{111\}”, Phys Rev. Lett., 81 (1998), 2608
[52] S. Ovesson, A. Bogicevic, B.I. Lundquist, “Origin of compact triangular islands in metal-on-metal growth”, Phys. Rev. Lett., 83 (1999), 2608 | DOI
[53] J.M. Pomeroy et al., “Kinetic Monte Carlo-molecular dynamics investigations of hyperthermal copper deposition on Cu \{111\}”, Phys. Rev. B, 66 (2002), 235412 | DOI
[54] M. Müller et al., “Island shapes, island densities, and stacking-fault formation on Ir \{111\}: Kinetic Monte Carlo simulations and experiments”, Phys. Rev. B, 71 (2005), 075407 | DOI
[55] P. Hyldgaard, M. Persson, “Long-ranged adsorbate-adsorbate interactions mediated by a surface-state band”, J. Phys.: Condens. Matter, 12 (2000), L13 | DOI
[56] A.G. Syromyatnikov, A.L. Klavsyuk, A.M. Saletsky, “Analysis of interactions between Co adatoms on the vicinal Cu \{111\} surface”, JETP Lett., 100 (2014), 24 | DOI
[57] A.G. Syromyatnikov et al., “Ab initio study of interaction between 3d adatoms on the vicinal Cu \{111\} surface”, Mod. Phys. Lett. B, 30 (2016), 1650218 | DOI
[58] J.M. Rogowska, M. Maciejewski, “Dilute nanostructures built of dimmers: Kinetic Monte Carlo study of Co on Cu \{111\}”, Phys. Rev. B, 82 (2010), 035444 | DOI
[59] Bogicevic et al., “Nature, strength, and consequences of indirect adsorbate interactions on metals”, Phys. Rev. Lett., 85 (2000), 1910 | DOI
[60] J.M. Rogowska, M. Maciejewski, “Dilute Cu nanostructure stabilized by substrate-mediated interactions on Cu \{111\}: Kinetic Monte Carlo simulations”, Phys. Rev. B, 74 (2006), 235402 | DOI
[61] A.S. Smirnov et al., “Effect of quantum confinement of surface electrons on an atomic motion on nanoislands: Ab initio calculations and kinetic Monte Carlo simulations”, Phys. Rev. B, 78 (2008), 041405(R) | DOI
[62] N.N. Negulyaev et al., “Effect of strain relaxations on heteroepitaxial metal-on-metal island nucleation and superlattice formation: Fe on Cu \{111\}”, Phys. Rev. B, 79 (2009), 195411 | DOI
[63] N.N. Negulyaev et al., “Self-organization of Ce adatoms on Ag \{111\}: A kinetic Monte Carlo study”, Phys. Rev. B, 74 (2006), 035421 | DOI
[64] S.V. Kolesnikov, A.L. Klavsyuk, A.M. Saletsky, “Formation of cobalt bilayer islands on Cu \{100\} surface”, Phys. Solid state, 51 (2009), 1254 | DOI
[65] U. Ramsperger et al., “Growth of Co on a stepped and on a flat Cu (001) surface”, Phys. Rev. B, 53 (1996), 8001 | DOI
[66] S.A. Dokukin et al., “Influence of burrowing the atoms on the density of the Fe and Co nanoclusters on the Cu \{100\} surface”, Phys. Solid state, 55 (2009), 1505 | DOI
[67] R. Pentcheva et al., “Non-Arrhenius behavior of the island density in metal heteroepitaxy: Co on Cu (001)”, Phys. Rev. Lett., 90 (2003), 076101 | DOI
[68] O. Kurnosikov, J.T. Kolhepp, W.J.M. de Jonge, Can surface atoms be moved with an STM tip?, Europhys. Lett., 64 (2003), 77 | DOI
[69] R. van Gastel et al., “Vacancy-mediated diffusion of Co atoms embedded in Cu (001)”, Surf. Sci., 605 (2011), 1956 | DOI
[70] S.V. Kolesnikov, A.L. Klavsyuk, A.M. Saletsky, “Atomic-scale self-organization of Co nanostructures embedded into Cu \{100\}”, Phys. Rev. B, 79 (2009), 115433 | DOI
[71] S.V. Kolesnikov, A.L. Klavsyuk, A.M. Saletsky, “Vacancy formation on stepped Cu \{100\} accelerated with STM: Molecular dynamics and kinetic Monte Carlo simulations”, Phys. Rev. B, 80 (2009), 245412 | DOI
[72] S.V. Kolesnikov, A.L. Klavsyuk, A.M. Saletsky, “Simulation of the formation of vacancies upon scanning of Cu \{100\} surface”, JETP Lett., 89 (2009), 471 | DOI
[73] M. Giesen, “Step and island dynamics at solid/vacuum interfaces”, Progr. Surf. Sci., 68 (2001), 1 | DOI
[74] A.L. Klavsyuk, A.M. Saletsky, “Formation and properties of metallic atomic contacts”, Phys. Usp., 58 (2015), 933 | DOI | DOI
[75] F. Sato et al., “Computer simulations of gold nanowire formation: the role of outlayer atoms”, Appl. Phys. A, 81 (2005), 1527 | DOI
[76] A.L. Klavsyuk et al., “Molecular dynamics simulation of the formation of metal nanocontacts”, Phys. Solid State, 53 (2011), 2356 | DOI
[77] S.V. Kolesnikov et al., “Formation of gold nanocontact in an ultrahigh vacuum transmission electron microscope: A kinetic Monte Carlo simulation”, Europhys. Lett., 103 (2013), 48002 | DOI
[78] S.V. Kolesnikov, A.L. Klavsyuk, A.M. Saletsky, “Simulation of self-organization of nanocontacts in thin gold film”, Phys. Solid State, 55 (2013), 1950 | DOI
[79] V. Rodrigues, T. Fuhrer, D. Ugarte, “Signature of atomic structure in the quantum conductance of gold nanowires”, Phys. Rev. Lett., 85 (2000), 4124 | DOI
[80] S.V. Kolesnikov, A.L. Klavsyuk, A.M. Saletsky, “Self-organisation and magnetic properties of Co nanostructures embedded in a Cu \{100\} surface”, Surf. Sci., 612 (2013), 48 | DOI
[81] O. Trushin et al., “Self-learning kinetic Monte Carlo method: application to Cu \{111\}”, Phys. Rev. B, 72 (2005), 115401 | DOI
[82] O.S. Trushin, M. Kotrla, F. Maca, “Energy barriers on stepped IrIr \{111\} surfaces: a molecular statics calculation”, Surf. Sci., 389 (1997), 55 | DOI
[83] H. Jónson, G. Mills, K.W. Jacobsen, “Nudged elastic band method for finding energy paths of transitions”, Classical and quantum dynamics in condensed phase simulations, World Scientific, Singapore, 1998, 385 | DOI
[84] A. Karim et al., “Diffusion of small two-dimensional Cu island on Cu \{111\} studied with a kinetic Monte Carlo method”, Phys. Rev. B, 73 (2006), 165411 | DOI
[85] O.S. Trushin i dr., “Issledovanie diffuzionnykh protsessov na poverkhnosti metallov metodom samoobuchaemogo kineticheskogo Monte-Karlo”, Matem. modelirovanie, 19 (2007), 116–126
[86] A. Karim et al., “The crossover from collective motion to periphery diffusion for two-dimensional adatom-island on Cu \{111\}”, J. Phys.: Condens. Matter, 23 (2011), 462201 | DOI
[87] G. Nandipati et al., “Parallel kinetic Monte Carlo simulations of Ag \{111\} island coarsening using a large database”, J. Phys.: Condens. Matter, 21 (2009), 084214 | DOI
[88] G. Nandipati et al., “Kinetically driven shape changes in early stages of two-dimensional island coarsening: Ag/Ag \{111\}”, Phys Rev. B, 88 (2013), 115402 | DOI
[89] S.I. Shah et al., “Self-diffusion of small Ni clusters on the Ni \{111\} surface: A self-learning kinetic Monte Carlo study”, Phys Rev. B, 88 (2013), 035414 | DOI
[90] A. Latz, L. Brendel, D.E. Wolf, “A three-dimensional self-learning kinetic Monte Carlo model: application to Ag \{111\}”, J. Phys.: Condens. Matter, 24 (2012), 485005 | DOI
[91] M. Jongmanns, A. Latz, D.E. Wolf, “Impurity-induced island pinning during electromigration”, EPL, 110 (2015), 16001 | DOI
[92] A. Latz et al., “Anisotropy of electromigration-induced void and island drift”, J. Phys.: Condens. Matter, 26 (2014), 055005 | DOI
[93] G. Henkelman, H.J. Jonson, “Improved tangent estimate in the nudged elastic band method for finding minimum energy path and saddle point”, J. Chem. Phys., 113 (2000), 9978 | DOI
[94] E.A. Bleda, X. Gao, M.S. Daw, “Calculations of diffusion in FCC binary alloys using on-the-fly kinetic Monte Carlo”, Computational Materials Science, 43 (2008), 608 | DOI
[95] S.V. Kolesnikov, A.L. Klavsyuk, A.M. Saletsky, “The role of the diffusion of dimmers in the formation of Co nanostructures embedded into Cu \{100\} surface”, Eur. Phys. J. B, 86 (2013), 399 | DOI
[96] S.V. Kolesnikov, “Self-organization of iron-atom nanostructures in the first layer of the \{100\} copper surface”, JETP Lett., 99 (2014), 286 | DOI
[97] S.V. Kolesnikov, A.L. Klavsyuk, A.M. Saletsky, “Fe and Co nanostructures embedded into the Cu \{100\} surface: Self-Organization and magnetic properties”, JETP, 121 (2015), 616 | DOI
[98] G. Henkelman, H.J. Jonson, “A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives”, J. Chem. Phys., 111 (1999), 7010 | DOI
[99] G. Henkelman, H.J. Jonson, “Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table”, J. Chem. Phys., 115 (2001), 9657 | DOI
[100] M. Basham, F. Montalenti, P.A. Mulheran, “Multiscale modeling of island nucleation and growth during Cu \{100\} homoepitaxy”, Phys. Rev. B, 73 (2006), 045422 | DOI
[101] C. Harris et al., “Calculations of diffusion-limited processes in Ni3Al using accelerated molecular dynamics”, Comp. Material Sci., 37 (2005), 462 | DOI
[102] K. Salo, S. Takizawa, T. Mohri, “On-the-fly kinetic Monte Carlo simulation of atomic diffusion in L10 structure”, Materials Transactions, 52 (2011), 391 | DOI
[103] L.J. Karssemeijer et al., “Long-timescale simulations of diffusion in molecular solids”, PCCP, 14 (2012), 10844 | DOI
[104] L.J. Karssemeijer et al., “Dynamics of CO in amorphous water-ice environments”, The Astrophysical journal, 781 (2014), 16 | DOI
[105] F. Hontinfinde, A. Rapallo, R. Ferrando, “Numerical study of growth and relaxation of small C60 nanoclusters”, Surf. Sci., 600 (2006), 995 | DOI
[106] H. Xu, Y.N. Osetsky, R.E. Stoller, “Simulation complex atomistic processes: On-the-fly kinetic Monte Carlo scheme with selective active volumes”, Phys. Rev. B, 84 (2011), 132103 | DOI
[107] H. Xu et al., “Self-evolving atomistic kinetic Monte Carlo simulations of defects in materials”, Comp. Material Sci., 100 (2015), 135 | DOI
[108] S.A. Trygubenko, D.J. Wales, “A doubly nudged elastic band method for finding transition states”, J. Chem. Phys., 120 (2004), 2082 | DOI
[109] A. Kushima et al., “Computing the viscosity of supercooled liquids”, J. Chem. Phys., 130 (2009), 224504 | DOI
[110] L.K. Beland et al., “Kinetic activation-relaxation technique”, Phys. Rev. E, 84 (2011), 046704 | DOI
[111] O.S. Trushin et al., “Searching for transition paths in multidimensional space with a fixed repulsive bias potential”, Phys. Rev. B, 69 (2004), 033405 | DOI
[112] B. Puchala, M.L. Falk, K. Garikipati, “An energy basin finding algorithm for kinetic Monte Carlo acceleration”, J. Chem. Phys., 132 (2010), 134104 | DOI
[113] M.A. Novotny, “Monte Carlo algorithms with absorbing Markov Chains: Fast local algorithms for slow dynamics”, Phys. Rev. Lett., 74 (1995), 1 | DOI
[114] C.S. Deo, D.J. Srolovitz, “First passage time Markov Chain analysis of rare events for kinetic Monte Carlo: double kink nucleation during dislocation glide”, Modeling Simul. Mater. Sci. Eng., 10 (2002), 581 | DOI
[115] D.R. Mason, R.E. Rudd, A.P. Sutton, “Stochastic kinetic Monte Carlo algorithms for long-range Hamiltonians”, Computer Physics Communication, 160 (2004), 140 | DOI
[116] S.A. Trygubenko, D.J. Wales, “Graph transformation method for calculating waiting times in Markov chains”, J. Chem. Phys., 124 (2006), 234110 | DOI
[117] S.V. Kolesnikov, “Low-temperature study of the magnetic properties of finite atomic chains”, Jetp. Lett., 103 (2016), 588 | DOI
[118] K.A. Fichthorn, Y. Lin, “A local superbasin kinetic Monte Carlo method”, J. Chem. Phys., 138 (2013), 164104 | DOI
[119] La Magna, S. Coffa, “Accelerated Monte Carlo algorithms for defect diffusion and clustering”, Comp. Material Sci., 17 (2000), 21 | DOI
[120] C.D. van Siclen, “Stochastic method for accommodation of equilibrating basins in kinetic Monte Carlo simulations”, J. Phys.: Condens. Matter, 19 (2007), 072201 | DOI
[121] W. Kohn., “Nobel Lecture: Electronic structure of matter - wave functions and density functionals”, Rev. Mod. Phys., 71 (1999), 1253 | DOI | MR
[122] R. Car, M. Parrinello, “Unified approach for molecular dynamics and density-functional theory”, Phys. Rev. Lett., 55 (1985), 2471 | DOI
[123] Y. Li, B.-G. Liu, “Long-range ferromagnetism in one-dimensional monatomic spin chains”, Phys. Rev. B, 73 (2006), 174418 | DOI
[124] Y. Li, B.-G. Liu, “Current controlled spin reversal of nanomagnets with giant unaxial anisotropy”, Phys. Rev. Lett., 96 (2006), 217201 | DOI
[125] A.S. Smirnov et al., “Magnetic behavior of one-and two-dimensional nanostructures stabilized by surface-state electrons: a kinetic Monte Carlo study”, New J. Phys., 11 (2009), 063004 | DOI
[126] P.A. Ignatiev et al., “Magnetic ordering of nanocluster ensembles promoted by electronic substratemediated interactions: Ab initio and kinetic Monte Carlo studies”, Phys. Rev. B, 80 (2009), 165408 | DOI
[127] K.-C. Zhang, B.-G. Liu, “Dynamical ferromagnetism of interacting tiny magnets with strong anisotropy”, Phys. Lett. A, 374 (2010), 2058 | DOI
[128] K.M. Tsysar, S.V. Kolesnikov, A.M. Saletsky, “Magnetization dynamics of mixed Co-Au chains on Cu \{110\} substrate: Combined ab initio and kinetic Monte Carlo study”, Chin. Phys. B, 24 (2015), 097302 | DOI
[129] Y. Li, B.-G. Liu, “Monte Carlo simulated dynamical magnetization of single-chain magnets”, J. Magn. Magn. Mat., 378 (2015), 186 | DOI
[130] S.V. Kolesnikov, K.M. Tsysar, A.M. Saletsky, “Magnetic properties of one-dimensional Au-Co on the copper \{110\} surface”, Phys. Solid State, 57 (2015), 1513 | DOI