Kinetic Monte Carlo method: mathematical foundations and applications to physics of low-dimensional nanostructures
Matematičeskoe modelirovanie, Tome 30 (2018) no. 2, pp. 48-80

Voir la notice de l'article provenant de la source Math-Net.Ru

The kinetic Monte Carlo method is essential tool for investigation of atomic and molecular systems. It is applicable for the wide range of problems such as the atomic diffusion, the formation of crystal defects and chemical compounds, the growth and the self-organization of nanostructures. In the present review we consider the basic principles of the kinetic Monte Carlo method and its modern modifications both lattice and non-lattice. The special attention is focused on the self-learning algorithms constructed from different saddle point finding methods and the algorithms for kinetic Monte Carlo acceleration. All methods are illustrated by the actual examples, the most of them are connected with the physics of metal surfaces.
Keywords: kinetic Monte Carlo, self-organization
Mots-clés : nanostructures.
@article{MM_2018_30_2_a3,
     author = {S. V. Kolesnikov and A. M. Saletsky and S. A. Dokukin and A. L. Klavsyuk},
     title = {Kinetic {Monte} {Carlo} method: mathematical foundations and applications to physics of low-dimensional nanostructures},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--80},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_2_a3/}
}
TY  - JOUR
AU  - S. V. Kolesnikov
AU  - A. M. Saletsky
AU  - S. A. Dokukin
AU  - A. L. Klavsyuk
TI  - Kinetic Monte Carlo method: mathematical foundations and applications to physics of low-dimensional nanostructures
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 48
EP  - 80
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_2_a3/
LA  - ru
ID  - MM_2018_30_2_a3
ER  - 
%0 Journal Article
%A S. V. Kolesnikov
%A A. M. Saletsky
%A S. A. Dokukin
%A A. L. Klavsyuk
%T Kinetic Monte Carlo method: mathematical foundations and applications to physics of low-dimensional nanostructures
%J Matematičeskoe modelirovanie
%D 2018
%P 48-80
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_2_a3/
%G ru
%F MM_2018_30_2_a3
S. V. Kolesnikov; A. M. Saletsky; S. A. Dokukin; A. L. Klavsyuk. Kinetic Monte Carlo method: mathematical foundations and applications to physics of low-dimensional nanostructures. Matematičeskoe modelirovanie, Tome 30 (2018) no. 2, pp. 48-80. http://geodesic.mathdoc.fr/item/MM_2018_30_2_a3/