Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_2_a2, author = {E. S. Dubinkina and V. A. Poddubny}, title = {Numerical implementation for the fluid location of atmosphere method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {33--47}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_2_a2/} }
TY - JOUR AU - E. S. Dubinkina AU - V. A. Poddubny TI - Numerical implementation for the fluid location of atmosphere method JO - Matematičeskoe modelirovanie PY - 2018 SP - 33 EP - 47 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_2_a2/ LA - ru ID - MM_2018_30_2_a2 ER -
E. S. Dubinkina; V. A. Poddubny. Numerical implementation for the fluid location of atmosphere method. Matematičeskoe modelirovanie, Tome 30 (2018) no. 2, pp. 33-47. http://geodesic.mathdoc.fr/item/MM_2018_30_2_a2/
[1] V.V. Penenko, M.G. Korotkov, “Primenenie chislennykh modelej dlia prognozirovaniia avarijnykh i ekologicheski neblagopriiatnykh situatcij v atmosfere”, Optika atmosfery i okeana, 11:06 (1998), 567–572
[2] A.E. Aloian, Modelirovanie dinamiki i kinematiki gazovykh primesej i aerozolej v atmosfere, ed. G.I. Marchuk, Nauka, M.; In-t vychislitelnoj matematiki RAN, 2008, 415 pp.
[3] L.L. Ashbaugh, “A statistical trajectory technique for determining air pollution source regions”, J. Air Pollut. Control. Ass., 33 (1983), 1096–1098 | DOI
[4] P. Seibert, H. Kromp-Kolb, U. Baltensperger et al., “Trajectory analysis of aerosol measurements at high alpine sites”, Transport and Transformation of Pollutants in the Troposphere, Academic Publ., Den Haag, 1994, 689–693
[5] A. Stohl, “Trajectory statistics — a new method to establish source-reseptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe”, Atmos. Environ., 30:4 (1996), 579–587 | DOI
[6] V.A. Poddubny, E.S. Nagovitsyna, “Retrieval of spatial field of atmospheric aerosol concentration according to data from local measurements: A modification of the method of back trajectory statistics”, Izvestiya, Atmospheric and Oceanic Physics, 49:4 (2013), 404–410 | DOI | DOI
[7] S. M. Sakerin (red.), Issledovanie radiatcionnykh kharakteristik aerozolia v aziatskoj chasti Rossii, Izd-vo Instituta optiki atmosfery SO RAN, Tomsk, 2012, 484 pp.
[8] R.W. Sinnott, “Virtues of the Haversine”, Sky and Telescope, 68:2 (1984), 159 | MR
[9] B.P. Demidovich, I.A. Maron, Osnovy vychislitelnoj matematiki, 3-e izd., Nauka, M., 1966, 665 pp.
[10] J.E. Dennis, R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983, 378 pp. | MR
[11] B.N. Holben, T.F. Eck, I. Slutsker et al., “AERONET — A federated instrument network and data archive for aerosol characterization”, Rem. Sens. Env., 66:1 (1998), 1–16 | DOI
[12] http:/aeronet.gsfc.nasa.gov
[13] R.R. Draxler, G.D. Hess, “An Overview of the HYSPLIT-4 Modelling System for Trajectories, Dispersion and Deposition”, Australian Meteorological Magazine, 47 (1998), 295–308
[14] http://ready.arl.noaa.gov/
[15] M. Neteler, H. Mitiasova, Open Source GIS: A GRASS GIS Approach, Springer, 2008, 408 pp. | MR
[16] S.M. Sakerin, S.Yu. Andreev, T.V. Bedareva, et al., “Aerozolnaya opticheskaia tolshcha atmosfery v Dalnevostochnom Primorie po dannym sputnikovykh i nazemnykh nabliudenij”, Optika atmosfery i okeana, 24:08 (2011), 654–660
[17] E.S. Dubinkina, Modelirovanie aerozolnykh polej na osnove sovmestnogo analiza dannykh solnechnoj fotometrii i informatcii o dinamike atmosfery, Avtoref. dis. ... kand. fiz.-mat. nauk: 25.00.29, Tomsk, 2015, 18 pp.
[18] V.A. Poddubnyj, E.S. Nagovitcyna, “Otcenka pogreshnostej i verifikatciya metoda fliuid-lokatcii atmosfery”, Optika atmosfery i okeana, 27:10 (2014), 869–877