Numerical implementation for the fluid location of atmosphere method
Matematičeskoe modelirovanie, Tome 30 (2018) no. 2, pp. 33-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical algorithms for the implementation of the fluid location of atmosphere (FLA) method are considered. The FLA method is designed to retrieve the mean effective fields of the atmospheric pollutant concentrations based on the measurement results. Different approaches to iterative solution of the mass conservation equation within the framework of this method are discussed. Stable convergent numerical scheme is proposed, which allows to significantly reduce calculation time. As an example the results of demonstration task to estimate the mean effective fine aerosol concentration field based on the photometric measurements at Ussuriysk monitoring site are presented.
Keywords: numerical simulation, iterative methods, back trajectory statistics, atmosphere
Mots-clés : mass conservation equation, pollutant.
@article{MM_2018_30_2_a2,
     author = {E. S. Dubinkina and V. A. Poddubny},
     title = {Numerical implementation for the fluid location of atmosphere method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--47},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_2_a2/}
}
TY  - JOUR
AU  - E. S. Dubinkina
AU  - V. A. Poddubny
TI  - Numerical implementation for the fluid location of atmosphere method
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 33
EP  - 47
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_2_a2/
LA  - ru
ID  - MM_2018_30_2_a2
ER  - 
%0 Journal Article
%A E. S. Dubinkina
%A V. A. Poddubny
%T Numerical implementation for the fluid location of atmosphere method
%J Matematičeskoe modelirovanie
%D 2018
%P 33-47
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_2_a2/
%G ru
%F MM_2018_30_2_a2
E. S. Dubinkina; V. A. Poddubny. Numerical implementation for the fluid location of atmosphere method. Matematičeskoe modelirovanie, Tome 30 (2018) no. 2, pp. 33-47. http://geodesic.mathdoc.fr/item/MM_2018_30_2_a2/

[1] V.V. Penenko, M.G. Korotkov, “Primenenie chislennykh modelej dlia prognozirovaniia avarijnykh i ekologicheski neblagopriiatnykh situatcij v atmosfere”, Optika atmosfery i okeana, 11:06 (1998), 567–572

[2] A.E. Aloian, Modelirovanie dinamiki i kinematiki gazovykh primesej i aerozolej v atmosfere, ed. G.I. Marchuk, Nauka, M.; In-t vychislitelnoj matematiki RAN, 2008, 415 pp.

[3] L.L. Ashbaugh, “A statistical trajectory technique for determining air pollution source regions”, J. Air Pollut. Control. Ass., 33 (1983), 1096–1098 | DOI

[4] P. Seibert, H. Kromp-Kolb, U. Baltensperger et al., “Trajectory analysis of aerosol measurements at high alpine sites”, Transport and Transformation of Pollutants in the Troposphere, Academic Publ., Den Haag, 1994, 689–693

[5] A. Stohl, “Trajectory statistics — a new method to establish source-reseptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe”, Atmos. Environ., 30:4 (1996), 579–587 | DOI

[6] V.A. Poddubny, E.S. Nagovitsyna, “Retrieval of spatial field of atmospheric aerosol concentration according to data from local measurements: A modification of the method of back trajectory statistics”, Izvestiya, Atmospheric and Oceanic Physics, 49:4 (2013), 404–410 | DOI | DOI

[7] S. M. Sakerin (red.), Issledovanie radiatcionnykh kharakteristik aerozolia v aziatskoj chasti Rossii, Izd-vo Instituta optiki atmosfery SO RAN, Tomsk, 2012, 484 pp.

[8] R.W. Sinnott, “Virtues of the Haversine”, Sky and Telescope, 68:2 (1984), 159 | MR

[9] B.P. Demidovich, I.A. Maron, Osnovy vychislitelnoj matematiki, 3-e izd., Nauka, M., 1966, 665 pp.

[10] J.E. Dennis, R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983, 378 pp. | MR

[11] B.N. Holben, T.F. Eck, I. Slutsker et al., “AERONET — A federated instrument network and data archive for aerosol characterization”, Rem. Sens. Env., 66:1 (1998), 1–16 | DOI

[12] http:/aeronet.gsfc.nasa.gov

[13] R.R. Draxler, G.D. Hess, “An Overview of the HYSPLIT-4 Modelling System for Trajectories, Dispersion and Deposition”, Australian Meteorological Magazine, 47 (1998), 295–308

[14] http://ready.arl.noaa.gov/

[15] M. Neteler, H. Mitiasova, Open Source GIS: A GRASS GIS Approach, Springer, 2008, 408 pp. | MR

[16] S.M. Sakerin, S.Yu. Andreev, T.V. Bedareva, et al., “Aerozolnaya opticheskaia tolshcha atmosfery v Dalnevostochnom Primorie po dannym sputnikovykh i nazemnykh nabliudenij”, Optika atmosfery i okeana, 24:08 (2011), 654–660

[17] E.S. Dubinkina, Modelirovanie aerozolnykh polej na osnove sovmestnogo analiza dannykh solnechnoj fotometrii i informatcii o dinamike atmosfery, Avtoref. dis. ... kand. fiz.-mat. nauk: 25.00.29, Tomsk, 2015, 18 pp.

[18] V.A. Poddubnyj, E.S. Nagovitcyna, “Otcenka pogreshnostej i verifikatciya metoda fliuid-lokatcii atmosfery”, Optika atmosfery i okeana, 27:10 (2014), 869–877