Application of the Monte Carlo method for simulation of pattern formation by ion-beam sputtering the amorphous bodies
Matematičeskoe modelirovanie, Tome 30 (2018) no. 2, pp. 18-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formation of ordered structures at ion-beam sputtering a surface of amorphous bodies in case the strong nonlinearity has significant effect on morphology of the irradiated surface is studied. For numerical simulation of process three modifications of a Monte-Carlo method are used, first of which represents a kind of an imitating modeling. It is shown that direct (imitating) statistical simulation of ion-bombing of a surface of a target which best of all answers the considered physical process and is widely used in other works has an essential shortcoming. This shortcoming is that the casual fluctuations of the target sputtering depth in an imitating modeling lead to roughening of a surface which extent does not allow to observe those modes which follow from the continuous model. Especially it refers to the modes which are set after the long ion-radiation of a surface of a target. However, solutions of the continuous model can be investigated numerically by means of other modifications of a Monte-Carlo method with the under dispersion. Two such modifications are developed in this work. With their help the ordered structure from hollows with a hexagonal symmetry after the long radiation of a surface of a target by a normal stream of ions is under certain conditions received.
Keywords: erosion velocity, ion-beam sputtering, Monte Carlo method, hexagonal symmetry, structure factor, interface width.
Mots-clés : surface diffusion
@article{MM_2018_30_2_a1,
     author = {M. V. Skachkov},
     title = {Application of the {Monte} {Carlo} method for simulation of pattern formation by ion-beam sputtering the amorphous bodies},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {18--32},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_2_a1/}
}
TY  - JOUR
AU  - M. V. Skachkov
TI  - Application of the Monte Carlo method for simulation of pattern formation by ion-beam sputtering the amorphous bodies
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 18
EP  - 32
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_2_a1/
LA  - ru
ID  - MM_2018_30_2_a1
ER  - 
%0 Journal Article
%A M. V. Skachkov
%T Application of the Monte Carlo method for simulation of pattern formation by ion-beam sputtering the amorphous bodies
%J Matematičeskoe modelirovanie
%D 2018
%P 18-32
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_2_a1/
%G ru
%F MM_2018_30_2_a1
M. V. Skachkov. Application of the Monte Carlo method for simulation of pattern formation by ion-beam sputtering the amorphous bodies. Matematičeskoe modelirovanie, Tome 30 (2018) no. 2, pp. 18-32. http://geodesic.mathdoc.fr/item/MM_2018_30_2_a1/

[1] Gerasimenko N. N., Parkhomenko Iu. N., Kremnii — material nanoelektroniki, Tekhnosfera, M., 2007, 352 pp.

[2] Makeev M. A., Cuerno R., Barabasi A.-L., “Morphology of ion sputtered surfaces”, Nucl. Instr. and Meth. in Phys. Res. B, 197:3–4 (2002), 185–227 | DOI

[3] Park S., Kahng B., Jeong H., Barabasi A.-L., “Dynamics of ripple formation in sputter erosion: nonlinear phenomena”, Phys. Rev. Lett., 83:17 (1999), 3486 | DOI

[4] Kahng B., Jeong H., Barabasi A.-L., “Quantum dot and hole formation in sputter erosion”, Appl. Phys. Lett., 78:6 (2001), 805–807 | DOI

[5] Feix M., Hartmann A. K., Kree R., Munoz-Garcia J., Cuerno R., “Influence of collision cascade statistics on pattern formation of ion-sputtered surfaces”, Phys. Rev. B, 71:12 (2005), 125407 | DOI

[6] Kudryashov N. A., Ryabov P. N., Fedyanin T. E., Kutukov A. A., “Evolution of pattern formation under ion bombardment of substrate”, Phys. Lett. A, 377:10–11 (2013), 753–759 | DOI | MR

[7] Kudryashov N. A., Ryabov P. N., “Exact solutions of one pattern formation model”, Appl. Math. Comp., 232 (2014), 1090–1093 | DOI | MR

[8] Sigmund P., “Sputtering by particle bombardment”, Topics in Applied Physics, 47 (1981), 9–71 | DOI

[9] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Akademiia, M., 2006, 368 pp.

[10] Ermakov S. M., Metod Monte-Karlo v vychislitelnoi matematike (vvodnyi kurs), Sankt-Peterburg, 2009, 192 pp.

[11] Sobol I. M., Numerical Monte-Carlo methods, Nauka, M., 1973, 305 pp.

[12] Yewande E. O., Hartmann A. K., Kree R., “Propagation of ripples in Monte Carlo models of sputter-induced surface morphology”, Phys. Rev. B, 71:19 (2005), 195405 | DOI

[13] Hartmann A. K., Kree R., Yasseri T., “Simulating discrete models of pattern formation by ion beam sputtering”, J. Phys. Condens. Matter, 21:22 (2009), 224015 | DOI

[14] Kudryashov N. A., Skachkov M. V., “Statistical simulation of pattern formation by ionbeam sputtering”, Multidiscipline Modeling in Materials and Structures, 11:4 (2015), 527–543 | DOI | MR

[15] Niederreiter H., Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, PA, 1992 | MR