Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_1_a7, author = {V. G. Nazarov}, title = {Optimal radiation energies finding at the problem of determining the chemical composition of a medium}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {91--102}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_1_a7/} }
TY - JOUR AU - V. G. Nazarov TI - Optimal radiation energies finding at the problem of determining the chemical composition of a medium JO - Matematičeskoe modelirovanie PY - 2018 SP - 91 EP - 102 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_1_a7/ LA - ru ID - MM_2018_30_1_a7 ER -
V. G. Nazarov. Optimal radiation energies finding at the problem of determining the chemical composition of a medium. Matematičeskoe modelirovanie, Tome 30 (2018) no. 1, pp. 91-102. http://geodesic.mathdoc.fr/item/MM_2018_30_1_a7/
[1] S.V. Naidenov, V.D. Ryzhykov, “Ob opredelenii sostava metodom multienergeticheskoi radiografii”, Pisma v ZHTF, 28:9 (2002), 6–13
[2] S.P. Osipov, A.K. Temnik, S.V. Chakhlov, “Vliianie fizicheskikh faktorov na kachestvo identifikatsii veshchestv obiektov kontrolia vysokoenergeticheskim metodom dualnykh energii”, Defektoskopiia, 2014, no. 8, 69–77
[3] V.M. Fedoseev, Rentgenovskiy sposob obnaruzheniia veshchestva po znacheniiu ego effectivnogo atomnogo nomera, Patent RF No 2095795, 1997, Bull. No 16, 2002.06.10
[4] V.G. Nazarov, “Opredelenie khimicheskogo sostava i struktury neodnorodnoi sredy metodom rentgenovskoi tomografii”, ZhVMiMF, 47:8 (2007), 1413–1422 | MR
[5] A.E. Kovtanyuk, V.G. Nazarov, I.V. Prokhorov, I.P. Yarovenko, Sposob identifikatsii materialov putem mnogokratnogo radiograficheskogo oblucheniya, Patent RF No 2426102. 10.08.2011. Byull. No 22
[6] V.G. Nazarov, “Opredelenie khimicheskogo sostava neodnorodnogo tela metodom multienergeticheskoi radiografii”, SibZhIM, XIII:1(41) (2010), 72–83 ; V.G. Nazarov, “Determining the Chemical Composition of an Inhomogeneous Body by Multi-Energy Rsdiography”, Journal of Applied and Industrial Mathematics, 5:2 (2011), 1–12 | MR | Zbl | DOI
[7] A.S. Kurilik, Opredelenie atomnogo nomera veshchestva obiektov po oslableniiu puchkov fotonov s energiiami do 10 MeV, Dissertatsiia na soiskanie uchenoi stepeni kandidata fiz.-mat. nauk, NIIIaF MGU, 2014, 111 pp.
[8] J.H. Hubbell, S.M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy Absorption Coefficients 1 KeV to 20 MeV for Elements Z=1 to 92 and 48 Additional Substances of Dosimetric Interest, NISTIR 5632, 1995
[9] M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, NIST Standard Reference Database 8 (XGAM), http://physics.nist.gov/PhysRefData/Elements/index.html
[10] N.F. Losev, A.N. Smagunova, Osnovy rentgenospektralnogo fluorestsentnogo analiza, Khimiia, M., 1982, 208 pp.
[11] R. Chierniak, X-Ray Computed Tomography in Biomedical Engineering, Springer Verlag London Limited, 2011, xii+319 pp.
[12] P. Lankaster, Theory of matrices, Academic Press, New York–London, 1969 | MR | MR
[13] N.M. Andriushevskii, Analiz ustoichivosti reshenii system lineinykh algebraicheskikh uravnenii, Uchebnoe posobie, Izdatelskii otdel fakulteta VMiK MGU im. M.V. Lomonosova; MAKS Press, 2008, 71 pp.
[14] I.L. Knuniants (gl. red.) i dr., Khimicheskaia entsiklopediia, v. 5t, Sovetskaia entsiklopediia, M., 1988
[15] A.I. Volkov, I.M. Zharskii, Bolshoy ximicheskii spravochnik, Sovremennaia shkola, Minsk, 2005, 608 pp.
[16] N.V. Koronovskii, “Gidrotermalnye obrazovaniia v okeanakh”, Sorosovskii obrazovatelnyi zhurnal, 1999, no. 10, 55–62
[17] A. N. Tikhonov, V. Ia. Arsenin, Metody resheniia nekorrektnykh zadach, Nauka, M., 1979, 285 pp. | MR